A big team study evaluating translations with large language models
Comparisons between human and machine translations across 24 psychological measures
DOI:
https://doi.org/10.51094/jxiv.2056Keywords:
psychological scale, Large Language Models, machine translation, human translation, big team science, translation fidelityAbstract
Large Language Models (LLMs) are widely used in many aspects of psychological research, but their applicability in translating psychological measures to match human translation remains unverified. This ManyScales project aims to evaluate the validity and applicability of LLM translations from multiple perspectives and compare them with human translations. This study is a large-scale collaborative endeavour within Japan (43 researchers, 36 institutions), focusing on 24 English-language psychological scales. For each scale, an LLM-translated version was developed using the R package LLMTranslate, alongside a human-translated version by professional researchers. Both versions are back-translated using a common procedure. Both translation versions will be compared from the viewpoint of (a) expert evaluation of semantic fidelity, naturalness, and cultural validity; (b) lay participants' assessment of understandability and naturalness; and (c) psychometric analysis (factor structure, factor scores, measurement invariance, some coefficients, etc.). Furthermore, we will explore cosine similarity based on embedded representations to examine semantic distance from the original items. This research aims to reveal the extent to which LLM translation can be used for psychometric scale translation and where differences from human translation manifest, thereby contributing to the visualization and standardization of the scale translation process.
Conflicts of Interest Disclosure
All authors declare no conflicts of interest to report.Downloads *Displays the aggregated results up to the previous day.
References
Abrams, E., Leone, P. V., Cambrosio, A., & Faraj, S. (2025). The governance of open science: A comparative analysis of two open science consortia. Research Policy, 54(3), Article 105195. https://doi.org/10.1016/j.respol.2025.105195
Adetula, A., Forscher, P. S., Basnight-Brown, D., Azouaghe, S., & IJzerman, H. (2022). Psychology should generalize from—not just to—Africa. Nature Reviews Psychology, 1(7), 370–371. https://doi.org/10.1038/s44159-022-00070-y
Affonso, F. M. (2025). Detecting vision-enabled AI respondents in behavioral research through cognitive traps. PsyArXiv. https://doi.org/10.31234/osf.io/enuqj_v1
Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting, C., & Wingate, D. (2023). Out of one, many: Using language models to simulate human samples. Political Analysis, 31(3), 337–351. https://doi.org/10.1017/pan.2023.2
Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D. J., Goodman, A. M., Longhurst, C. A., Hogarth, M., & Smith, D. M. (2023). Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Internal Medicine, 183(6), 589–596. https://doi.org/10.1001/jamainternmed.2023.1838
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers, C. D., Clyde, M., Cook, T. D., De Boeck, P., Dienes, Z., Dreber, A., Easwaran, K., Efferson, C., … Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1), 6–10. https://doi.org/10.1038/s41562-017-0189-z
Binz, M., Akata, E., Bethge, M., Brändle, F., Callaway, F., Coda-Forno, J., Dayan, P., Demircan, C., Eckstein, M. K., Éltető, N., Griffiths, T. L., Haridi, S., Jagadish, A. K., Ji-An, L., Kipnis, A., Kumar, S., Ludwig, T., Mathony, M., Mattar, M., … Schulz, E. (2025). A foundation model to predict and capture human cognition. Nature, 644(8078), 1002–1009. https://doi.org/10.1038/s41586-025-09215-4
Binz, M., Alaniz, S., Roskies, A., Aczel, B., Bergstrom, C. T., Allen, C., Schad, D., Wulff, D., West, J. D., Zhang, Q., Shiffrin, R. M., Gershman, S. J., Popov, V., Bender, E. M., Marelli, M., Botvinick, M. M., Akata, Z., & Schulz, E. (2025). How should the advancement of large language models affect the practice of science? Proceedings of the National Academy of Sciences of the United States of America, 122(5), e2401227121. https://doi.org/10.1073/pnas.2401227121
Binz, M., & Schulz, E. (2023). Using cognitive psychology to understand GPT-3. Proceedings of the National Academy of Sciences of the United States of America, 120(6), e2218523120. https://doi.org/10.1073/pnas.2218523120
Bowers, J. S., Puebla, G., Thorat, S., Tsetsos, K., & Ludwig, C. J. H. (2025). Centaur: A model without a theory. PsyArXiv. https://doi.org/10.31234/osf.io/v9w37_v3
Breznau, N., Rinke, E. M., Wuttke, A., Nguyen, H. H. V., Adem, M., Adriaans, J., Alvarez-Benjumea, A., Andersen, H. K., Auer, D., Azevedo, F., Bahnsen, O., Balzer, D., Bauer, G., Bauer, P. C., Baumann, M., Baute, S., Benoit, V., Bernauer, J., Berning, C., … Żółtak, T. (2022). Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. Proceedings of the National Academy of Sciences of the United States of America, 119(44), e2203150119. https://doi.org/10.1073/pnas.2203150119
Brislin R. W. (1986). The wording and translation of research instruments. In Lonner W., Berry J. (Eds.), Field Methods in Cross-Cultural Research (pp. 137–164). Sage.
Cao, Y., Sickles, R. C., Triebs, T. P., & Tumlinson, J. (2024). Linguistic distance to English impedes research performance. Research Policy, 53(4), 104971. https://doi.org/10.1016/j.respol.2024.104971
Coles, N. A., Hamlin, J. K., Sullivan, L. L., Parker, T. H., & Altschul, D. (2022). Build up big-team science. Nature, 601(7894), 505–507. https://doi.org/10.1038/d41586-022-00150-2
Coles, N. A., March, D. S., Marmolejo-Ramos, F., Larsen, J. T., Arinze, N. C., Ndukaihe, I. L. G., Willis, M. L., Foroni, F., Reggev, N., Mokady, A., Forscher, P. S., Hunter, J. F., Kaminski, G., Yüvrük, E., Kapucu, A., Nagy, T., Hajdu, N., Tejada, J., Freitag, R. M. K., … Liuzza, M. T. (2022). A multi-lab test of the facial feedback hypothesis by the Many Smiles Collaboration. Nature Human Behaviour, 6(12), 1731–1742. https://doi.org/10.1038/s41562-022-01458-9
Cronin, B. (2001). Hyperauthorship: A postmodern perversion or evidence of a structural shift in scholarly communication practices? Journal of the American Society for Information Science and Technology, 52(7), 558–569. https://doi.org/10.1002/asi.1097
Cross, J., Kayalackakom, T., Robinson, R. E., Vaughans, A., Sebastian, R., Hood, R., Lewis, C., Devaraju, S., Honnavar, P., Naik, S., Joseph, J., Anand, N., Mohammed, A., Johnson, A., Cohen, E., Adeniji, T., Nnenna Nnaji, A., & George, J. E. (2025). Assessing ChatGPT’s capability as a new age standardized patient: Qualitative study. JMIR Medical Education, 11(1), e63353. https://doi.org/10.2196/63353
Cruchinho, P., López-Franco, M. D., Capelas, M. L., Almeida, S., Bennett, P. M., Miranda da Silva, M., Teixeira, G., Nunes, E., Lucas, P., Gaspar, F., & Handovers4SafeCare. (2024). Translation, cross-cultural adaptation, and validation of measurement instruments: A practical guideline for novice researchers. Journal of Multidisciplinary Healthcare, 17, 2701–2728. https://doi.org/10.2147/JMDH.S419714
DELVE (DECam Local Volume Exploration) Survey. (2025). DELVE Policy Guidelines Version 2.3. https://delve-survey.github.io/docs/DELVE_PolicyGuidelines.pdf
Dillion, D., Tandon, N., Gu, Y., & Gray, K. (2023). Can AI language models replace human participants? Trends in Cognitive Sciences, 27(7), 597–600. https://doi.org/10.1016/j.tics.2023.04.008
Elyoseph, Z., Hadar-Shoval, D., Asraf, K., & Lvovsky, M. (2023). ChatGPT outperforms humans in emotional awareness evaluations. Frontiers in Psychology, 14, 1199058. https://doi.org/10.3389/fpsyg.2023.1199058
Epstein, J., Santo, R. M., & Guillemin, F. (2015). A review of guidelines for cross-cultural adaptation of questionnaires could not bring out a consensus. Journal of Clinical Epidemiology, 68, 435-441. http://dx.doi.org/10.1016/j.jclinepi.2014.11.021
Forscher, P. S., Wagenmakers, E.-J., Coles, N. A., Silan, M. A., Dutra, N., Basnight-Brown, D., & IJzerman, H. (2023). The benefits, barriers, and risks of big-team science. Perspectives on Psychological Science, 18(3), 607–623. https://doi.org/10.1177/17456916221082970
Friese, S. P. (2025). Conversational analysis with AI - CA to the power of AI: Rethinking coding in qualitative analysis. OSF Preprints. https://doi.org/10.31219/osf.io/6b52m_v1
Google. (2025). Gmail's protections are strong and effective, and claims of a major Gmail security warning are false. The Keyword. https://blog.google/products/workspace/gmail-security-protections/
Götz, F. M., Maertens, R., Loomba, S., & van der Linden, S. (2024). Let the algorithm speak: How to use neural networks for automatic item generation in psychological scale development. Psychological Methods, 29(3), 494–518. https://doi.org/10.1037/met0000540
Granas, A. G., Nørgaard, L. S., & Sporrong, S. K. (2014). Lost in translation?: Comparing three Scandinavian translations of the Beliefs about Medicines Questionnaire. Patient Education and Counseling, 96(2), 216–221. https://doi.org/10.1016/j.pec.2014.05.010
Harkness J. (2003). Questionnaire translation. In Harkness J. A., van de Vijver F. J. R., Mohler P. P. (Eds.), Cross-Cultural Survey Methods (pp. 35–56). Wiley.
Harkness J. A., Villar A., & Edwards B. (2010). Translation, adaptation, and design. In Harkness J. A.et al. (Eds.), Survey Methods in Multinational, Multicultural and Multiregional Contexts (pp. 117-140). Hoboken, NJ: John Wiley.
Heinz, M. V., Mackin, D. M., Trudeau, B. M., Bhattacharya, S., Wang, Y., Banta, H. A., Jewett, A. D., Salzhauer, A. J., Griffin, T. Z., & Jacobson, N. C. (2025). Randomized trial of a generative AI chatbot for mental health treatment. NEJM AI, 2(4). https://doi.org/10.1056/aioa2400802
Hoekman, J., & Rake, B. (2024). Geography of authorship: How geography shapes authorship attribution in big team science. Research Policy, 53(2), 104927. https://doi.org/10.1016/j.respol.2023.104927
Holcombe, A. (2019). Farewell authors, hello contributors. Nature, 571(7764), 147. https://doi.org/10.1038/d41586-019-02084-8
Horn J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Huang, M., Zhang, X., Soto, C., & Evans, J. (2024). Designing LLM-agents with personalities: A psychometric approach. arXiv. https://doi.org/10.48550/arXiv.2410.19238
Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., Bocian, K., Brandt, M. J., Brooks, B., Brumbaugh, C. C., Cemalcilar, Z., Chandler, J., Cheong, W., Davis, W. E., Devos, T., Eisner, M., Frankowska, N., Furrow, D., Galliani, E. M., … Nosek, B. A. (2014). Investigating variation in replicability: A “many labs” replication project. Social Psychology, 45(3), 142–152. https://doi.org/10.1027/1864-9335/a000178
Kunst, J. R. (2025). LLMTranslate: 'shiny' app for TRAPD/ISPOR survey translation with LLMs (R package version 0.1.3). Comprehensive R Archive Network (CRAN). https://doi.org/10.32614/CRAN.package.LLMTranslate
Kunst, J. R., & Bierwiaczonek, K. (2023). Utilizing AI questionnaire translations in cross-cultural and intercultural research: Insights and recommendations. International Journal of Intercultural Relations: IJIR, 97(101888), 101888. https://doi.org/10.1016/j.ijintrel.2023.101888
Lakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A. J., Argamon, S. E., Baguley, T., Becker, R. B., Benning, S. D., Bradford, D. E., Buchanan, E. M., Caldwell, A. R., Van Calster, B., Carlsson, R., Chen, S.-C., Chung, B., Colling, L. J., Collins, G. S., Crook, Z., … Zwaan, R. A. (2018). Justify your alpha. Nature Human Behaviour, 2(3), 168–171. https://doi.org/10.1038/s41562-018-0311-x
Liu, W., & Ding, N. (2025). Can Centaur truly simulate human cognition? The fundamental limitation of instruction understanding. PsyArXiv. https://doi.org/10.31234/osf.io/zfhv9_v1
Maertens, R., Götz, F. M., Golino, H. F., Roozenbeek, J., Schneider, C. R., Kyrychenko, Y., Kerr, J. R., Stieger, S., McClanahan, W. P., Drabot, K., He, J., & van der Linden, S. (2024). The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment. Behavior Research Methods, 56(3), 1863–1899. https://doi.org/10.3758/s13428-023-02124-2
Massé, C. C., Krieger, V., Peró-Cebollero, M., Amador-Campos, J. A., & Guàrdia-Olmos, J. (2025). Measurement invariance and cross-linguistic validation of the PSS-4 in university context: multidimensional analysis and associations with psychological and behavioral outcomes. Frontiers in Psychology, 16(1648070), 1648070. https://doi.org/10.3389/fpsyg.2025.1648070
Maslej, N., Fattorini, L., Perrault, R., Gil, Y., Parli, V., Kariuki, N., Capstick, E., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y., Wald, R., Walsh, T., Hamrah, A., Santarlasci, L., … Oak, S. (2025). Artificial Intelligence Index Report 2025. arXiv. https://doi.org/10.48550/arXiv.2504.07139
Mei, Q., Xie, Y., Yuan, W., & Jackson, M. O. (2024). A Turing test of whether AI chatbots are behaviorally similar to humans. Proceedings of the National Academy of Sciences of the United States of America, 121(9), e2313925121. https://doi.org/10.1073/pnas.2313925121
三浦 麻子・小林 哲郎 (2015).オンライン調査モニタのSatisficeに関する実験的研究. 社会心理学研究,31(1), 1–12. https://doi.org/10.14966/jssp.31.1_1
Mokkink, L. B., Elsman, E. B. M., & Terwee, C. B. (2024). COSMIN guideline for systematic reviews of patient-reported outcome measures version 2.0. Quality of Life Research, 33(11), 2929–2939. https://doi.org/10.1007/s11136-024-03761-6
Moshontz, H., Campbell, L., Ebersole, C. R., IJzerman, H., Urry, H. L., Forscher, P. S., Grahe, J. E., McCarthy, R. J., Musser, E. D., Antfolk, J., Castille, C. M., Evans, T. R., Fiedler, S., Flake, J. K., Forero, D. A., Janssen, S. M. J., Keene, J. R., Protzko, J., Aczel, B., … Chartier, C. R. (2018). The Psychological Science Accelerator: Advancing psychology through a distributed collaborative network. Advances in Methods and Practices in Psychological Science, 1(4), 501–515. https://doi.org/10.1177/2515245918797607
Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159–168. https://doi.org/10.1207/s15327574ijt0502_4
Namazova, S., Brondetta, A., Strittmatter, Y., Nassar, M., & Musslick, S. (2025). Not yet AlphaFold for the mind: Evaluating Centaur as a synthetic participant. arXiv. https://doi.org/10.48550/arXiv.2508.07887
Orr, M., Cranford, D., Ford, K., Gluck, K., Hancock, W., Lebiere, C., Pirolli, P., Ritter, F., & Stocco, A. (2025). Not even wrong: On the limits of prediction as explanation in cognitive science. arXiv. http://arxiv.org/abs/2510.03311
Ozolins, U., Hale, S., Cheng, X., Hyatt, A., & Schofield, P. (2020). Translation and back-translation methodology in health research – a critique. Expert Review of Pharmacoeconomics & Outcomes Research, 1–9. https://doi.org/10.1080/14737167.2020.1734453
Park, J. J., & Oh, J. (2025). Enhancing international research through alternative back translation methods leveraging artificial intelligence. Human Resource Development International, 1–22. https://doi.org/10.1080/13678868.2025.2558571
Parsons, S., Azevedo, F., Elsherif, M. M., Guay, S., Shahim, O. N., Govaart, G. H., Norris, E., O’Mahony, A., Parker, A. J., Todorovic, A., Pennington, C. R., Garcia-Pelegrin, E., Lazić, A., Robertson, O., Middleton, S. L., Valentini, B., McCuaig, J., Baker, B. J., Collins, E., … Aczel, B. (2022). A community-sourced glossary of open scholarship terms. Nature Human Behaviour, 6(3), 312–318. https://doi.org/10.1038/s41562-021-01269-4
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Ruggeri, K., Panin, A., Vdovic, M., Većkalov, B., Abdul-Salaam, N., Achterberg, J., Akil, C., Amatya, J., Amatya, K., Andersen, T. L., Aquino, S. D., Arunasalam, A., Ashcroft-Jones, S., Askelund, A. D., Ayacaxli, N., Sheshdeh, A. B., Bailey, A., Barea Arroyo, P., Mejía, G. B., … García-Garzon, E. (2022). The globalizability of temporal discounting. Nature Human Behaviour, 6(10), 1386–1397. https://doi.org/10.1038/s41562-022-01392-w
Salama-Younes, M., Montazeri, A., Ismaïl, A., & Roncin, C. (2009). Factor structure and internal consistency of the 12-item General Health Questionnaire (GHQ-12) and the Subjective Vitality Scale (VS), and the relationship between them: a study from France. Health and Quality of Life Outcomes, 7(1), 22. https://doi.org/10.1186/1477-7525-7-22
Sanz, A., Tapia, J. L., García-Carpintero, E., Rocabado, J. F., & Pedrajas, L. M. (2025). ChatGPT simulated patient: Use in clinical training in psychology. Psicothema, 37(3), 23–32. https://doi.org/10.70478/psicothema.2025.37.21
佐々木 研一・豊田 秀樹 (2024). ChatGPTにより生成された心理尺度項目の信頼性・妥当性の評価 日本テスト学会誌, 20(1), 111–133. https://doi.org/10.24690/jart.20.1_111
Schröder, S., Morgenroth, T., Kuhl, U., Vaquet, V., & Paaßen, B. (2025). Large Language Models do not simulate human psychology. arXiv. https://doi.org/10.48550/arXiv.2508.06950
Seminara, D., Khoury, M. J., O’Brien, T. R., Manolio, T., Gwinn, M. L., Little, J., Higgins, J. P. T., Bernstein, J. L., Boffetta, P., Bondy, M., Bray, M. S., Brenchley, P. E., Buffler, P. A., Casas, J. P., Chokkalingam, A. P., Danesh, J., Smith, G. D., Dolan, S., Duncan, R., … Ioannidis, J. P. A. (2007). The emergence of networks in human genome epidemiology: Challenges and opportunities. Epidemiology, 18(1), 1–8. https://doi.org/10.1097/01.ede.0000249540.17855.b7
Stefana, A., Damiani, S., Granziol, U., Provenzani, U., Solmi, M., Youngstrom, E. A., & Fusar-Poli, P. (2024). Psychological, psychiatric, and behavioral sciences measurement scales: best practice guidelines for their development and validation. Frontiers in Psychology, 15, 1494261. https://doi.org/10.3389/fpsyg.2024.1494261
Symeonaki, M., Stamou, G., Kazani, A., Tsouparopoulou, E., & Stamatopoulou, G. (2024). Examining the development of attitude scales using Large Language Models (LLMs). arXiv preprint. https://doi.org/10.48550/arXiv.2405.19011
Teixeira da Silva, J. A., & Yamada, Y. (2024). Could generative artificial intelligence serve as a psychological counselor? Prospects and limitations. Central Asian Journal of Medical Hypotheses and Ethics, 5(4), 297–303. https://doi.org/10.47316/cajmhe.2024.5.4.06
Trafimow, D., Amrhein, V., Areshenkoff, C. N., Barrera-Causil, C. J., Beh, E. J., Bilgiç, Y. K., Bono, R., Bradley, M. T., Briggs, W. M., Cepeda-Freyre, H. A., Chaigneau, S. E., Ciocca, D. R., Correa, J. C., Cousineau, D., de Boer, M. R., Dhar, S. S., Dolgov, I., Gómez-Benito, J., Grendar, M., … Marmolejo-Ramos, F. (2018). Manipulating the alpha level cannot cure significance testing. Frontiers in Psychology, 9, 699. https://doi.org/10.3389/fpsyg.2018.00699
Vaidis, D. C., Sleegers, W. W. A., van Leeuwen, F., DeMarree, K. G., Sætrevik, B., Ross, R. M., Schmidt, K., Protzko, J., Morvinski, C., Ghasemi, O., Roberts, A. J., Stone, J., Bran, A., Gourdon-Kanhukamwe, A., Gunsoy, C., Moussaoui, L. S., Smith, A. R., Nugier, A., Fayant, M.-P., … Priolo, D. (2024). A multilab replication of the induced-compliance paradigm of cognitive dissonance. Advances in Methods and Practices in Psychological Science, 7(1), 25152459231213375. https://doi.org/10.1177/25152459231213375
Van Bavel, J. J., Cichocka, A., Capraro, V., Sjåstad, H., Nezlek, J. B., Pavlović, T., Alfano, M., Gelfand, M. J., Azevedo, F., Birtel, M. D., Cislak, A., Lockwood, P. L., Ross, R. M., Abts, K., Agadullina, E., Aruta, J. J. B., Besharati, S. N., Bor, A., Choma, B. L., … Boggio, P. S. (2022). National identity predicts public health support during a global pandemic. Nature Communications, 13, 517. https://doi.org/10.1038/s41467-021-27668-9
Visser, I., Bergmann, C., Byers-Heinlein, K., Dal Ben, R., Duch, W., Forbes, S., Franchin, L., Frank, M. C., Geraci, A., Hamlin, J. K., Kaldy, Z., Kulke, L., Laverty, C., Lew-Williams, C., Mateu, V., Mayor, J., Moreau, D., Nomikou, I., Schuwerk, T., … Zettersten, M. (2022). Improving the generalizability of infant psychological research: The ManyBabies model. Behavioral and Brain Sciences, 45(e35), e35. https://doi.org/10.1017/S0140525X21000455
Werner, P., Eliyahu, E., & Krupat, E. (2025). Mapping the translation and psychometric characteristics of the Patient-Practitioner Oriented Scale: A scoping review. Patient Education and Counseling, 137(108787), 108787. https://doi.org/10.1016/j.pec.2025.108787
Wild, D., Grove, A., Martin, M., Eremenco, S., McElroy, S., Verjee-Lorenz, A., Erikson, P., & ISPOR Task Force for Translation and Cultural Adaptation (2005). Principles of good practice for the translation and cultural adaptation process for patient-reported outcomes (PRO) measures: Report of the ISPOR task force for translation and cultural adaptation. Value in Health, 8(2), 94–104. https://doi.org/10.1111/j.1524-4733.2005.04054.x
Revelle, W. (2025). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.5.6, https://CRAN.R-project.org/package=psych.
山田 祐樹 (2024). 心理学を遊撃する──再現性問題は恥だが役に立つ──. ちとせプレス.
Zhang, W., Balloo, K., Hosein, A., & Medland, E. (2024). A scoping review of well-being measures: Conceptualisation and scales for overall well-being. BMC Psychology, 12(1), 585. https://doi.org/10.1186/s40359-024-02074-0
Downloads
Posted
Submitted: 2025-12-01 14:12:21 UTC
Published: 2025-12-09 09:34:46 UTC
License
Copyright (c) 2025
Yuki Yamada
Koji Kosugi
Yoshihiko Kunisato
Kyosuke Bunji
Takayuki Goto
Yasuhiro Hashimoto
Daisuke Kudo
Yifei Li
Yoshimasa Majima
Tomoya Mukai
Tatsuya Nomura
Mana Oguchi
Karen Shichijo
Tadahiro Shimotsukasa
Reina Takamatsu
Hiroki Takehashi
Masashi Takeshita
Ryosuke Asano
Mina Fukuda
Kaichiro Furutani
Toshiyuki Himichi
Hiroki Hirano
Tasuku Igarashi
Masataka Ito
Rina Kagawa
Yu Kanno
Hiromichi Kato
Kentaro Komura
Yuki Miyagawa
Kumpei Mizuno
Shinnosuke Muraura
Yu Niiya
Takuma Nishimura
Yuka Ozaki
Hideki Sato
Natsuki Sato
Taiki Shima
Ryoko Takikawa
Masanori Tanaka
Saori Tsukamoto
Akane Yamasaki
Fan Yang
Asako Miura

This work is licensed under a Creative Commons Attribution 4.0 International License.
