Dynamic evolution of retroviral envelope-derived sequences in primates
DOI:
https://doi.org/10.51094/jxiv.2051Keywords:
endogenous retrovirus, de novo genes, co-option, primate evolutionAbstract
It is known that several endogenous retroviruses (ERVs), remnants of ancient retroviral integrations, retain envelope (env) genes encoding fusogenic proteins in primates. While most env genes are degraded, a few have been co-opted by hosts, yet the entire evolutionary dynamics of env sequences remain poorly understood. To explore this, we screened and compared env open-reading frames (ORFs) from 247 primate genomes. In total, 8,683 nearly intact env-ORFs encoding over 400 amino acids were identified, and their copy numbers ranged from 3 to 429 across primate species. By conducting sequence similarity clustering, we found that the reported functional env-derived genes tend to have low copy numbers and to be retained across primate lineages. Notably, an evolutionary conserved env ortholog with low sequence similarity to other env-ORFs was identified in tarsiers, which exhibited cell fusion activity in vitro, suggesting a potential fusogenic function in tarsiers. Further, we found that certain co-opted env-derived genes may have lost their functions due to nonsense or indel mutations within specific primate lineages. Considering that many env genes tend to be maintained at low copy numbers and reported to be under natural selection, such dynamic evolutionary turnover of env-derived genes may be driven by host-virus arms races, as viruses and endogenous retroviruses often share cell-surface receptors.
Conflicts of Interest Disclosure
The authors declare that they have no conflict of interest.Downloads *Displays the aggregated results up to the previous day.
References
E.S. Lander et al., Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
S.J. Hoyt et al., From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).
W.E. Johnson, Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol. 17, 355–370 (2019).
M.T. Ueda et al., Comprehensive genomic analysis reveals dynamic evolution of endogenous retroviruses that code for retroviral-like protein domains. Mob. DNA 11, 29 (2020).
S. Nakagawa, M.U. Takahashi, gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes. Database 2016, baw087 (2016).
Y. Niimura, M. Nei, Evolution of olfactory receptor genes in the human genome. Proc. Natl. Acad. Sci. U.S.A. 100, 12235–12240 (2003).
N. Grandi, E. Tramontano, HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front. Microbiol. 9, 462 (2018).
P. Priščáková et al., Syncytin-1, syncytin-2 and suppressyn in human health and disease. J. Mol. Med. 101, 1527–1542 (2023).
S. Mi et al., Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).
S. Blaise, N. de Parseval, L. Bénit, T. Heidmann, Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. U.S.A. 100, 13013–13018 (2003).
M. Gholami Barzoki, S. Shatizadeh Malekshahi, Z. Heydarifard, M.J. Mahmodi, H. Soltanghoraee, The important biological roles of Syncytin-1 of human endogenous retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the human placenta development. Mol. Biol. Rep. 50, 7901–7907 (2023).
B. Bonnaud et al., Natural history of the ERVWE1 endogenous retroviral locus. Retrovirology 2, 57 (2005).
H. Shoji, K. Kitao, T. Miyazawa, S. Nakagawa, Potentially reduced fusogenicity of syncytin-2 in New World monkeys. FEBS Open Bio. 13, 459–467 (2023).
C. Esnault, G. Cornelis, O. Heidmann, T. Heidmann, Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLoS Genet. 9, e1003400 (2013).
S. Blaise, N. de Parseval, T. Heidmann, Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes. Retrovirology 2, 19 (2005).
K. Imakawa, S. Nakagawa, T. Miyazawa, Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20, 771–788 (2015).
L.F.K. Kuderna et al., A global catalog of whole-genome diversity from 233 primate species. Science 380, 906–913 (2023).
L.F.K. Kuderna et al., Identification of constrained sequence elements across 239 primate genomes. Nature 625, 735–742 (2024).
C. Llorens, The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).
A. Sinha, W.E. Johnson, Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous Env gene. Curr. Opin. Virol. 25, 105–112 (2017).
O. Heidmann, HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc. Natl. Acad. Sci. U.S.A. 114, E6642–E6651 (2017).
G.Z. Han, M. Worobey, An endogenous foamy virus in the aye-aye (Daubentonia madagascariensis). J. Virol. 86, 7696–7698 (2012).
A.L. Kjeldbjerg, P. Villesen, L. Aagaard, F.S. Pedersen, Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evol. Biol. 8, 266 (2008).
G. Cornelis et al., Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants. Proc. Natl. Acad. Sci. U.S.A. 110, E828–E837 (2013).
Y. Nakaya, K. Koshi, S. Nakagawa, K. Hashizume, T. Miyazawa, Fematrin-1 is involved in fetomaternal cell-to-cell fusion in Bovinae placenta and has contributed to diversity of ruminant placentation. J. Virol. 87, 10563–10572 (2013).
Y. Nakaya, T. Miyazawa, The Roles of Syncytin-Like Proteins in Ruminant Placentation. Viruses 7, 2928–2942 (2015).
K. Imakawa, Endogenous Retroviruses and Placental Evolution, Development, and Diversity. Cells 11, 2458 (2022).
K. Štafl et al., Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta. Proc. Natl. Acad. Sci. U.S.A. 121, e2407519121 (2024).
K. Kitao, H. Shoji, T. Miyazawa, S. Nakagawa, Dynamic Evolution of Retroviral Envelope Genes in Egg-Laying Mammalian Genomes. Mol. Biol. Evol. 40, msad090 (2023).
J. Sugimoto, M. Sugimoto, H. Bernstein, Y. Jinno, D. Schust, A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci. Rep. 3, 1462 (2013).
M. Marin, C.S. Tailor, A. Nouri, D. Kabat, Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J. Virol. 74, 8085–8093 (2000).
R.N. Miyaho et al., Susceptibility of domestic animals to a pseudotype virus bearing RD-114 virus envelope protein. Gene 567, 189–195 (2015).
W. Wang, H. Zhao, G.Z. Han, Host-Virus Arms Races Drive Elevated Adaptive Evolution in Viral Receptors. J. Virol. 94, e00684-20 (2020).
S. Suzuki et al., Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3, e55 (2007).
H. Shiura, M. Kitazawa, F. Ishino, T. Kaneko-Ishino, Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. Front. Cell. Dev. Biol. 11, 1273638 (2023).
J.A. Frank et al., Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022).
A. Miyake et al., Convergent evolution of antiviral machinery derived from endogenous retrovirus truncated envelope genes in multiple species. Proc. Natl. Acad. Sci. U.S.A. 119, e2114441119 (2022).
J. Ito et al., Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J. Virol. 87, 12029–12040 (2013).
A.R. Quinlan, I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
P. Rice, I. Longden, A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
S.R. Eddy, Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).
W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
S. Capella-Gutiérrez, J.M. Silla-Martínez, T. Gabaldón, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
B.Q. Minh et al., IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020).
D.T. Hoang, O. Chernomor, A. von Haeseler, B.Q. Minh, L.S. Vinh, UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).
K. Kitao, T. Tanikaga, T. Miyazawa, Identification of a post-transcriptional regulatory element in the human endogenous retroviral syncytin-1. J. Gen. Virol. 100, 662–668 (2019).
C. Camacho et al., BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Downloads
Posted
Submitted: 2025-11-29 08:23:44 UTC
Published: 2025-12-01 09:27:55 UTC
License
Copyright (c) 2025
Koichi Kitao
Kirill Kryukov
Lihua Jin
Yuta Shintaku
Takashi Hayakawa
So Nakagawa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
