Preprint / Version 1

General method for predicting interface bonding at various oxide - metal interfaces

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.192

Keywords:

oxide-metal interface, interface chemistry, thermodynamic equilibrium, prediction software

Abstract

Interface termination bonding between metal oxide and metals is discussed from a viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3/metal and ZnO/metal interfaces is extended for general interface between metal-oxide and metals. Information on interface bonding was extracted by carefully examining experimental results and first-principles calculations in references. It is demonstrated that interface termination bonding can be predicted by extending the method to oxide-metal interfaces in general. The method uses only basic quantities of pure elements and the formation enthalpy of oxides.  Therefore, it can be applied for most of metals (including elemental semiconductors) in the periodic table and metal-oxides having one stable valence. The method is implemented as a software and can be used for free of charge.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

U. Alber, H. Mullejans, and M. Ruhle, Micron 30, 101–108 (1999); doi: 10.1016/S0968-4328(99)00013-X

V. Merlin and M. Eustathopoulos, J. Mater. Sci. 30, 3619–3624 (1995); doi: 10.1007/BF00351875

D. Chantain, F. Chabert, V. Ghetta, and J. Fouletier, J. Am. Ceram. Soc. 77, 197–201 (1994); doi: 10.1111/j.1151-2916.1994.tb06977.x

S. Shi, S. Tanaka, and M. Kohyama, Phys. Rev. B76, 075431 (2007); doi: 10.1103/PhysRevB.76.075431

S. Shi, S. Tanaka and M. Kohyama, J. Amer. Ceram. Soc. 90, 2429–2440 (2007); doi: 10.1111/j.1551-2916.2007.01769.x

S. Shi, S. Tanaka, and M. Kohyama, Mater. Trans. 47, 2696–2700 (2006); doi: 10.2320/matertrans.47.2696

K. Shiraishi, T. Nakayama, T. Nakaoka, A. Ohta, and S. Miyazaki, ECS Trans. 13, 21–27 (2008); doi: 10.1149/1.2908612

T. Nagata, P. Ahmet, Y. Z. Yoo, K. Yamada, K. Tsutsui, Y. Wada, and T. Chikyow, Appl. Surf. Sci. 252, 2503–2506 (2006); doi: 10.1016/j.apsusc.2005.05.085

A. Asthagiri, C. Niederberger, A. J. Francis, L. M. Porter, P. A. Salvador, and D. S. Sholl, Surf. Sci. 537, 134–152 (2003); doi: 10.1016/S0039-6028(03)00609-5

M. Yoshitake, S. Nemsak, T. Skala, N. Tsud, T. Kim, V. Matolin, and K. C. Prince, Surf. Sci. 604, 2150–2156 (2010); doi: 10.1016/j.susc.2010.09.007

K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, F. Ren, J. Crystal Growth, 287, 149–156 (2006); doi: 10.1016/j.jcrysgro.2005.10.059

S. J. Young, L. W. Ji, S. J. Chang, Y. K. Su, J. Crystal Growth, 293, 43–47 (2006); doi: 10.1016/j.jcrysgro.2006.03.059

T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, J. Crystal Growth, 281, 513–517 (2005); doi: 10.1016/j.jcrysgro.2005.04.056

M. Yoshitake, S. Yagyu, and T. Chikyow, J. Vac. Sci. Technol. A32, 021102 (2014); doi: 10.1116/1.4849375

M. Yoshitake, S. Yagyu, and T. Chikyow, International Journal of Metals, 2014, 120840, (2014); doi: 10.1155/2014/120840

M. Yoshitake, J. Vac. Sci. Technol. A 39, 063217 (2021); doi: 10.1116/6.0001312

https://interchembond.nims.go.jp

M.L.Muolo, F.Valenza, A.Passerone, and D.Passerone, Materials Science and Enginnering, A495, 153–158 (2008); doi: 10.1016/j.msea.2007.06.101

A. R. Miedema and J. W. F. Dorleijn, Surf. Sci. 95, 447–464 (1980); doi: 10.1016/0039-6028(80)90189-2

https://surfseg.nims.go.jp

P.Brix, and G. Herzberg, Can. J. Phys., 32, 110–135 (1954); doi: doi.org/10.1139/p54-013

H. Jang, D. N. Seidman, and K. L. Merkle, Interface Sci., 1993, 1, 61–75; doi: 10.1007/BF00203266

D. A. Muller, D. A. Shashkov, R. Benedek, L. H. Yang, J. Silcox, and D. N. Seidman, Phys. Rev. Lett., 80, 4741–4744 (1998); doi: 10.1103/PhysRevLett.80.4741

F. R. Chen, S.K. Chiou, L. Chang, and C.S. Hong, Ultramicroscopy 54, 179–191 (1994); doi: 10.1016/0304-3991(94)90116-3

R. Benedek, M. Minkoff, and L. H. Yang, Phys. Rev. B 54, 7697–7700 (1996); doi: 10.1103/PhysRevB.54.7697

D.A. Shashkov, M.F. Chisholm, and D.N. Seidman, Acta mater. 47, 3939–3951, 1999; doi: 10.1016/S1359-6454(99)00255-4

D. A. Shashkov, D. A. Muller, and D. N. Seidman, Acta Mater. 47, 3953–3963, (1999); doi: 10.1016/S1359-6454(99)00256-6

I. Yudanov, G. Pacchioni, K. Neyman, and N. Rosch, J. Phys. Chem. B101, 2786–2792 (1997); doi: 10.1021/jp962487x

A. Trampert, F. Ernst, C.P. Flynn, H.F. Fischmeister, and M. Ruhle, Acta Metall. Mater. 40, S227–S236 (1992); doi: 10.1016/0956-7151(92)90281-I

U. Schonberger, O. K. Anderson and M. Methfessel, Acta Metall. Mater. 40, S1–S10 (1992); doi: 10.1016/0956-7151(92)90257-F

Chun Li, Ruqian Wu, A. J. Freeman and C. L. Fu, Phys. Rev. B48, 8317–8322 (1993); doi: 10.1103/PhysRevB.48.8317

H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon and K. H. Shin, Phys. Rev. B84, 054401 (2011); doi: 10.1103/PhysRevB.84.054401

R. S. Bauer, R. Z. Bachrach, and L. J. Brillson, Appl. Phys. Lett. 37, 1006–1008 (1980); doi: 10.1063/1.91720

Liu Hui, Li Yuping, Zhang Caili, Dong Nan, Lan Aidong, Li Hongfei, Dong Hongbiao, and Han Peide, Computational Materials Science 78, 116–122 (2013); doi: 10.1016/j.commatsci.2013.05.037

Liu Hui, Li Yuping, Zhang Caili, Dong Nan, Li Hongfei, Dong Hongbiao, Han Peide, Computational Materials Science, 82, 2014, 367–371; doi: 10.1016/j.commatsci.2013.09.066

H. T. Aller, X. Yu, A. Wise, R. S. Howell, A. J. Gellman, A. J. H. McGaughey, and J. A. Malen, Nano Lett. 19, 8533−8538 (2019); doi: 10.1021/acs.nanolett.9b03017

L.K. Chu, W.C.Lee, M.L.Huang, Y.H.Chang, L.T.Tung, C.C.Chang, Y.J.Lee, J.Kwo, M.Hong, Journal of Crystal Growth 311, 2195–2198 (2009); doi: 10.1016/j.jcrysgro.2008.10.069

T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, Y. Ikuhara, Mater. Trans., JIM 45, 2137–2143 (2004); doi: 10.2320/matertrans.45.2137

W. Wang, H.T. Guo, J.P. Gao, X.H. Dong, Q.X. Qin, J. Mater. Sci. 35, 1495–1499 (2000); doi: 10.1023/A:1004741215543

E.C. Dickey, V.P. Dravid, P.D. Nellist, D.J. Wallis, S.J. Pennycook, A. Revcolevschi, Microscopy and Microanalysis. 3, 443–450 (1997); doi: 10.1017/S1431927697970343

S.V. Eremeev, S. Schmauder, S. Hocker, S.E. Kulkova, Surface Science 603, 2218–2225 (2009); doi: 10.1016/j.susc.2009.04.031

A. Christensen and E. A. Carter: J. Chem. Phys. 114, 5816–5831 (2001); doi: 10.1063/1.1352079

M.C. Munoz, S. Gallego, J.I. Beltran, J. Cerda, Surface Science Reports 61, 303–344 (2006); doi: 10.1016/j.surfrep.2006.03.002

S.-H. Liu, H.P. Wang, H.-C. Wang, Y.W. Yang, J. Electron. Spectrosc. Relat. Phenom. 144–147, 373–376 (2005); doi: 10.1016/j.elspec.2005.01.281

J. Ikonomov, D. Stoychev, Ts. Marinova, Appl. Surf. Sci. 161, 94–104 (2000); doi: 10.1016/S0169-4332(00)00033-7

Qian-Lin Tang, Qi-Jun Hong, and Zhi-Pan Liu, Journal of Catalysis 263, 114–122 (2009); doi: 10.1016/j.jcat.2009.01.017

Q. Guo, and R.W. Joyner, Appl. Surf. Sci. 144–145, 375–379 (1999); doi: 10.1016/S0169-4332(98)00827-7

X. Zhang, H. Wang, and B.-Q. Xu, J. Phys. Chem. B 109, 9678–9683 (2005); doi: 10.1021/jp050645r

P. W. Peacock, K. Xiong, K. Tse, and J. Robertson, Phys. Rev. B 73, 075328 (2006); doi: 10.1103/PhysRevB.73.075328

D. K. Chan, Ho Jang, D. N. Seidman, and K. L. Merkle, Scri. Metall. Mater. 29, 1119–1124 (1993); doi: 10.1016/0956-716X(93)90188-X

Fangyi Rao, Ruqian Wu, and A. J. Freeman, Phys. Rev. B51, 10052–56, (1995); doi: 10.1103/PhysRevB.51.10052

V. Capodieci, F. Wiest, T. Sulima, J. Schulze, and I. Eisele, Microelectronics Reliability, 45, 937–940 (2005); doi: 10.1016/j.microrel.2004.11.021

A. Ablat, M. Mamat, Y. Ghupur, A. Aimidula, R. Wu, M. A. Baqi, T. Gholam, J. Wang, H. Qian, R. Wu, and K. Ibrahim, Materials Letters 191, 97–100 (2017); doi: 10.1016/j.matlet.2016.12.137

K. Liu, E. Ko, C. S. Hwang and J-H Choi, J. Phys. D: Appl. Phys. 52, 365101 (2019); doi: 10.1088/1361-6463/ab29da

C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, Di. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, Hsing-Huang Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, IEEE Trans. Electron Devices, 51, 971–977 (2004); doi: 10.1109/TED.2004.829513

C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, Di. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, Hsing-Huang Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, IEEE Trans. Electron Devices, 51, 978–984 (2004); doi: 10.1109/TED.2004.829510

K. Xiong, P. W. Peacock, and J. Robertson, Appl. Phys. Lett. 86, 012904 (2005); doi: 10.1063/1.1844611

P. W. Peacock, K. Xiong, K. Tse, and J. Robertson, Phys. Rev. B 73, 075328 (2006); doi: 10.1103/PhysRevB.73.075328

H. Zhu, C. Tang, and R. Ramprasad, Phys. Rev. B 82, 235413 (2010); doi: 10.1103/PhysRevB.82.235413

A.R. Miedema, R. Boom, and F. R. De Boer, Journal of the Less-Common Metals, 41, 283–298 (1975); doi: 10.1016/0022-5088(75)90034-X

Downloads

Posted


Submitted: 2022-10-20 01:31:45 UTC

Published: 2022-10-21 06:53:11 UTC
Section
Nanosciences & Materials Sciences