Preprint / Version 1

Examining the Adaptive significance of colour change in the freshwater shrimp Neocaridina davidi

##article.authors##

  • Yuki Ishiba Nishiyamato Gakuen High School
  • Ayanosuke Takenaka Nishiyamato Gakuen High School
  • Reo Sato Nishiyamato Gakuen High School
  • Shohta Nakayama Nishiyamato Gakuen High School
  • Yusuke Fuke Division of Applied Biological Science, Faculty of Agriculture, Setsunan University

DOI:

https://doi.org/10.51094/jxiv.1804

Keywords:

color substrate, background matching, DNA barcoding, RGB luminance values

Abstract

Background matching is a cryptic strategy where animal coloration matches the environment to evade, and body color change serves as the dynamic means to achieve this. While crustacean color change is known, its adaptive significance is understudied. This research tested if color change in the freshwater shrimp Neocaridina davidi has a function of matching the color of their surrounding environment. Neocaridina davidi were held in red, green, blue, and white environments for seven days. Evaluating body color changes via RGB luminance showed a trend where the color component matching the environment had the smallest decrease in luminance. This result suggests N. davidi can adjust its hue to match background colors, supporting the role of color change as cryptic camouflage. This study offers preliminary insights into the adaptive basis of color change in Neocaridina species.

Conflicts of Interest Disclosure

The authors declare that no competing interests exist

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

秋山 豊子, 佐々木 誠, 竹中 淑子 (2005) 動物の体色発現と紋様形成の仕組みⅠ色素細胞の発生における遺伝子制御と数学モデル「色と紋様の総合科学」共同研究報告. 慶應義塾大学日吉紀要. 自然科学, 37:73–94

Auerswald L, Freier U, Lopata A, Meyer B (2008) Physiological and morphological color change in Antarctic krill, Euphausia superba: A field study in the Lazarev Sea. Journal of Experimental Biology, 211:3850–3858. https://doi.org/10.1242/jeb.024232

Bagnara JT, HadleyME (1973) Chromatophores and color change: The comparative physiology of animal pigmentation. Prentice-Hall, Englewood Cliffs

Bauer RT (2004) Remarkable Shrimps – Adaptations and Natural History of the Carideans. University of Oklahoma Press, Norman, USA

Chassard-Bouchaud C, Genofre GC, Noel P (1973) Sur le métabolisme des pigments carotenoides de Palaemon serratus (Pennant) (Crustacé, Décapode). Effet de l'ablation elective de la glande du sinus sur les pigment tegumentaire. Comptes Rendus de l'Académie Des Sciences, 276:3155–3158

Detto T, Hemmi JM, Backwell PR (2008) Coloration and color changes of the fiddler crab, Uca capricornis: A descriptive study. PLoS One, 3:e1629. https://doi.org/10.1371/journal.pone.0001629

Duarte RC, Flores AAV, Stevens M (2016) Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372:20160342. https://doi.org/10.1098/rstb.2016.0342

Brown FA Jr (1934) The Chemical Nature of the Pigments and the Transformations Responsible for Color Changes in Palaemonetes. Biological Bulletin, 67:365–380

Fingerman M (1969) Cellular aspects of the control of physiological color changes in crustaceans. American Zoologist, 9:443–452

藤井 良三 (1977) 色素細胞. 東京大学出版会, 東京

藤井 良三 (1999) 色素胞の反応の定量的記録法. 比較生理生化学, 16:108–118

福家 悠介, 国松 翔太, 中島 淳 (2024) 五島列島宇久島におけるミナミヌマエビ, 福江島におけるシナヌマエビ, および九州北部におけるイキシマカワリヌマエビの初記録. Cancer, 33:47–55. https://doi.org/10.18988/cancer.33.0_47

Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants, 6:96. https://doi.org/10.3390/antiox6040096

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35:518–522. https://doi.org/10.1093/molbev/msx281

Ishii R, Fuke Y (2025) River dam prevents the invasion of non-native species of Neocaridina Kubo, 1938 (Decapoda: Caridea: Atyidae) into native habitats: A case study in the Yumesaki River system, Japan. Journal of Crustacean Biology, 45:ruaf009. https://doi.org/10.1093/jcbiol/ruaf009

岩本 泰雄, 肥喜里 秀明, 末永 安博 (1978) 淡水エビ類についてI 長崎県に生息する淡水エビ類の分布と生態に関する研究. 長崎県高等学校教育研究会水産部会研究報告, 15:1–14

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14:587–589. https://doi.org/10.1038/nmeth.4285

松本 淳, 溝口 昌子 (2001) 色素細胞―機能と発生分化の分子機構から色素性疾患への対応を探る. 慶応義塾大学出版会, 東京

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

森本 悠乃, 岩倉 基, 栗原 巧, 村瀬 敦宣 (2025) 宮崎県五ヶ瀬川水系における国内外来魚オヤニラミの食性:通し回遊性エビ類に対する捕食の実態. Ichthy, 55:9–14. https://doi.org/10.34583/ichthy.55.0_9

Nery LEM, Castrucci AML (2002) Crustacean chromatophore: endocrine regulation and intracellular signalling systems. In: Wiese K (eds) The Crustacean Nervous System, 98–112. Springer, Berlin, Heidelberg

Okonechnikov K, Golosova O, Fursov M, the UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

Onuki K, Fuke Y (2022) Rediscovery of a native freshwater shrimp, Neocaridina denticulata, and expansion of an invasive species in and around Lake Biwa, Japan: genetic and morphological approach. Conservation Genetics, 23:967–980. https://doi.org/10.1007/s10592-022-01467-1

大島 範子, 杉本 雅純 (2001) 魚類における色素細胞反応と体色変化.(松本二郎, 溝口昌子 編)色素細胞 機能と発生分化の分子機構から色素性疾患への対応を探る, 161–176. 慶應義大学塾出版会, 東京

太田 吉彦 (1969) 体色変化の調節機構. 横浜市立大学理科紀要, 1:1–32

Parisenti J, Beirao LH, Mourino JL, Vieira F, Buglione CC, Maraschim M (2011) Effect of background color on shrimp pigmentation. Boletim do Instituto de Pesca, 37: 177–182

Rao KR (1985) Pigmentary Effectors. Integuments, Pigments and Hormonal Processes, 9: 395–462

Robison WG, Charlton JS (1973) Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea). Journal of Experimental Zoology, 186:279–304. https://doi.org/10.1002/jez.1401860307

Siegenthaler A, Mastin A, Dufaut C, Mondal D, Benvenuto C (2018) Background matching in the brown shrimp Crangon crangon: Adaptive camouflage and behavioural-plasticity. Scientific Reports, 8:3292. https://doi.org/10.1038/s41598-018-21412-y

Tomas AL, Sganga DE, López Greco LS (2019) Effect of background color and shelters on female pigmentation in the ornamental red cherry shrimp Neocaridina davidi (Caridea, Atyidae). Journal of the World Aquaculture Society, 51:775–787. https://doi.org/10.1111/jwas.12660

豊田 幸詞, 関 慎太郎,(写真), 駒井 智幸(監修)(2019) 日本産淡水性・汽水性エビ・カニ図鑑.緑書房, 東京

Tume RK, Sikes, AL Tabrett S, Smith DM (2009) Effect of background color on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked color. Aquaculture, 296:129–135. https://doi.org/10.1016/j.aquaculture.2009.08.006

Wade NM, Anderson M, Sellars MJ, Tume RK, Preston N, Glencross BD (2012) Mechanisms of color adaptation in the prawn Penaeus monodon. Journal of Experimental Biology, 215:343–350. https://doi.org/10.1242/jeb.064592

Wang W, Ma Z, Li W, Xue Y, Moss AS, Wu M (2024) Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii. Metabolites,, 14:676 https://doi.org/10.3390/metabo14120676

Posted


Submitted: 2025-10-29 23:43:51 UTC

Published: 2025-11-04 07:19:10 UTC
Section
Biology, Life Sciences & Basic Medicine