プレプリント / バージョン1

Radiation-induced alteration of meta-chert

##article.authors##

  • Maruyama, Ippei Graduate School of Engineering, The University of Tokyo
  • Toshiaki Kondo Nuclear Power Department, Kajima Corporation
  • Shohei Sawada Nuclear Power Department, Kajima Corporation
  • Patricie Halodova Department of Material Analysis, Centrum výzkumu Řež s.r.o
  • Alica Fedorikova Department of Material Analysis, Centrum výzkumu Řež s.r.o
  • Takahiro Ohkubo Graduate School of Engineering, Chiba University
  • Kenta Murakami Graduate School of Engineering, The University of Tokyo
  • Takafumi Igari Technology Safety Department, MRI Research Associates Inc.
  • Elena Tajuelo Rodriguez Nuclear Structures and Construction Group, Oak Ridge National Laboratory
  • Kiyoteru Suzuki Societal Safety and Industrial Innovation Division, Mitsubishi Research Institute, Inc.

DOI:

https://doi.org/10.51094/jxiv.160

キーワード:

Neutron irradiation、 rock-forming minerals、 amorphization、 metamictication、 volume expansion

抄録

Concrete aggregate identified as “meta-chert” was irradiated with gamma-rays and neutrons. To identify the volume expansion of the aggregate under neutron irradiation, the following analyses were performed for pristine and irradiated α-quartz and meta-chert: X-ray diffraction (XRD)/Rietveld analysis, dimension change, water pycnometry, He-pycnometry, light optical microscopy (LOM), and scanning electron microscopy (SEM). From the difference of volume expansion observed from dimension change and water / helium pycnometry, the crack opening inside the aggregate subjected to irradiation was elucidated, and this was confirmed by LOM and SEM analysis. The crack contribution to the expansion of the aggregate was significant for neutron fluence > 6.99 × 1019 n/cm2, for E ≧ 0.01 MeV. Based on the XRD analysis, changes in lattice parameters were identified and the cell volume expansion was compared with the data by helium pycnometry. ased on the density change calculation and phase calculation data, the density of X-ray amorphous phase was consistent with that of expanded crystal quartz.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Bates, J. B., Hendricks, R. W. and Shatter, L. B., (1974). "Neutron irradiation effects and structure of noncrystalline SiO2." The Journal of Chemical Physics, 61(10), 4163–4176.

Bolse, W., (1999). "Amorphization and recrystallization of covalent tetrahedral networks." Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 148(1–4), 83–92.

Brown, F. B., Barrett, R. F., Booth, T. E., Bull, J. S., Cox, L. J., Forster, R. A., Goorley, T. J., Mosteller, R. D., Post, S. E., Prael, R. E. and others, (2002). "MCNP version 5." Trans. Am. Nucl. Soc, 87(273), 2–3935.

Bruck, P. M., Esselman, T. C., Elaidi, B. M., Wall, J. J. and Wong, E. L., (2019). "Structural assessment of radiation damage in light water power reactor concrete biological shield walls." Nuclear Engineering and Design, 350(May), 9–20.

Bykov, V. N., Denisov, A. V, Dubrovskii, V. B., Korenevskii, V. V, Krivokoneva, G. K. and Muzalevskii, L. P., (1981). "Effect of irradiation temperature on the radiation expansion of quartz." Soviet Atomic Energy, 51(3), 593–595.

Denisov, A., Dubrovskii, V. and Solovyov, V., (2012). "Radiation resistance of mineral and polymer construction materials." ZAO MEI Publishing House.

Doebelin, N. and Kleeberg, R., (2015). "Profex: a graphical user interface for the Rietveld refinement program BGMN." Journal of Applied Crystallography, 48(5), 1573–1580.

Douillard, L. and Duraud, J. P., (1996). "Amorphization of α-quartz under irradiation." Journal de Physique III, 6(12), 1677–1687. (被引用数:15Export Date: 16 April 2015)

Downs, R. T. and Hall-Wallace, M., (2003). "The American Mineralogist crystal structure database." American Mineralogist, 88(1), 247–250.

Dubrovskii, V. B., Ibragimov, S. S., Ladygin, A. Y., Kulakovskii, M. Y. and Pergamenshchik, B. K., (1968). "Radiation stability of serpentine concrete." Soviet Atomic Energy, 25(6), 1345–1346.

Dubrovskii, V. B., Ibragimo, S., Korenevs, V., Ladygin, A. Y., Pergamen, V. and Perevalo, V., (1970). "Hematite Concrete for Shielding Against High Neutron Fluxes." Atomnaya Energiya (USSR), 28(3), 258–260. (From Duplicate 1 (Hematite Concrete for Shielding against High Neutron Fluxes - Dubrovskii, V B; Ibragimo, Ss; Korenevs, Vv; Ladygin, A Y; Pergamen, Vk; Perevalo, Vs)H7332Times Cited:0Cited References Count:4)

Dubrovskii, V. B., Ibragimov, A., Ladygin, S. and Pergamenshckik, B. K., (1966a). "The effect of neutron irradiation on certain properties of refractory concretes." Atomnaya Energiya, 21, 108–112. (被引用数:7Export Date: 16 April 2015)

Dubrovskii, V. B., Ibragimov, S. S., Ladygin, A. Y., Pergamenshchik, B. K. and Hodge, B., (1966b). "Radiation damage in ordinary concrete." Atomnaya Energiya, 23(4), 310–316.

Elleuch, L. F., Dubois, F. and Rappeneau, J., (1972). "Effects of Neutron Radiation on Special Concretes and Their Components." Special Publication, 34.

Field, K. G., Remec, I. and Pape, Y. Le, (2015). "Radiation effects in concrete for nuclear power plants - Part I: Quantification of radiation exposure and radiation effects." Nuclear Engineering and Design, 282, 126–143.

Gates-Rector, S. and Blanton, T., (2019). "The powder diffraction file: a quality materials characterization database." Powder Diffraction, 34(4), 352–360.

Giorla, A., Vaitová, M., Le Pape, Y. and Štemberk, P., (2015). "Meso-scale modeling of irradiated concrete in test reactor." Nuclear Engineering and Design, 295(December), 59–73.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. and Le Bail, A., (2009). "Crystallography Open Database--an open-access collection of crystal structures." Journal of Applied Crystallography, 42(4), 726–729.

Gupta, P. K., (1993). "Rigidity, Connectivity, and Glass-Forming Ability." Journal of the American Ceramic Society, 76(5), 1088–1095.

Hilsdorf, H., Kropp, J. and Koch, H., (1978). "The effects of nuclear radiation on the mechanical properties of concrete." ACI SP-55, 223–251. (被引用数:10Export Date: 16 April 2015)

Hobbs, L. W., (1995). "The role of topology and geometry in the irradiation-induced amorphization of network structures." Journal of Non-Crystalline Solids, 182(1), 27–39.

Hsiao, Y. H., La Plante, E. C., Krishnan, N. M. A., Le Pape, Y., Neithalath, N., Bauchy, M. and Sant, G., (2017). "Effects of Irradiation on Albite’s Chemical Durability." Journal of Physical Chemistry A, 121(41), 7835–7845.

Johnson, F. B. and Pease, R. S., (1954). "The pile irradiation of quartz crystal oscillators." Dublin Philosophical Magazine and Journal of Science, 45(365), 651–654.

Kambayashi, D., Sasano, H., Sawada, S., Suzuki, K. and Maruyama, I., (2020). "Numerical Analysis of a Concrete Biological Shielding Wall under Neutron Irradiation by 3D RBSM." Journal of Advanced Concrete Technology, 18(10), 618–632.

Khmurovska, Y. and Štemberk, P., (2021a). "Catalogue of Radiation-Induced Damage of Rock Aggregates Identified by RBSM Analysis." Journal of Advanced Concrete Technology, 19(6), 668–686.

Khmurovska, Y. and Štemberk, P., (2021b). "RBSM-based model for prediction of radiation-induced volumetric expansion of concrete aggregates." Construction and Building Materials, 294, 123553.

Krishnan, N. M. A., Wang, B., Le Pape, Y., Sant, G. and Bauchy, M., (2017a). "Irradiation- vs. vitrification-induced disordering: The case of α -quartz and glassy silica." Journal of Chemical Physics, 146(20), 204502.

Krishnan, N. M. A., Wang, B., Yu, Y., Le Pape, Y., Sant, G. and Bauchy, M., (2017b). "Enthalpy landscape dictates the irradiation-induced disordering of quartz." Physical Review X, 7(3), 031019.

Li, Y., Le Pape, Y., Tajuelo Rodriguez, E., Torrence, C. E., Arregui Mena, J. D., Rosseel, T. M. and Sircar, M., (2020). "Microstructural characterization and assessment of mechanical properties of concrete based on combined elemental analysis techniques and Fast-Fourier transform-based simulations." Construction and Building Materials, 257, 119500.

Luu, V. N., Murakami, K., Samouh, H., Maruyama, I., Suzuki, K., Prak Tom, P., Chen, L., Kano, S., Yang, H., Abe, H. and Suzuki, M., (2020). "Swelling of alpha-quartz induced by MeV ions irradiation: Critical dose and swelling mechanism." Journal of Nuclear Materials, 539, 152266.

Martin, R. A., (1966). "The effect of moisture on the compressive and tensile strength on a variety of rock materials." University of Missouri at Rolla.

Maruyama, I., Takizawa, M., Sato, O., Etoh, J., Kontani, O., Sawada, S. and Ishikawa, S., (2017a). "Post-Japanese NRA Research Project On Soundness Evaluation Criteria For Radiation-Induced Concrete Degradation." In: IAEA Ed. IAEA Fourth International Conference on Nuclear Power Plant Life Management. Lyon, France: IAEA, CN246-70.

Maruyama, I., Kontani, O., Takizawa, M., Sawada, S., Ishikawa, S., Yasukouchi, J., Sato, O., Etoh, J. and Igari, T., (2017b). "Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation." Journal of Advanced Concrete Technology, 15(9), 440–523.

Mota, F., Caturla, M. J., Perlado, J. M., Dominguez, E. and Kubota, A., (2005). "Threshold energy of formation of an oxygen vacancy defect in SiO 2 by atomic displacements using molecular dynamics." Fusion Engineering and Design, 75–79(SUPPL.), 1027–1030.

Murata, K. J. and Norman, M. B., (1976). "An index of crystallinity for quartz." American Journal of Science, 276(9), 1120–1130.

Nakano, S., Muto, S. and Tanabe, T., (2005a). "Change in Mechanical Properties of Ion-Irradiated Ceramics Studied by Nanoindentation Method." Journal of the Japan Institute of Metals and Materials, 69(9), 815–824.

Nakano, S., Muto, S. and Tanabe, T., (2005b). "Change in Mechanical Properties of Ion?Irradiated Ceramics Studied by Nanoindentation Method." Journal of Japan Instute of Metals, 69(9), 815–824.

Ojo, O. and Brook, N., (1990). "The effect of moisture on some mechanical properties of rock." Mining Science and Technology, 10(2), 145–156.

Okada, N., Ohkubo, T., Maruyama, I., Murakami, K. and Suzuki, K., (2020). "Characterization of irradiation-induced novel voids in α -quartz." AIP Advances, 10(12), 125212.

Le Pape, Y., Field, K. G. and Remec, I., (2015). "Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling." Nuclear Engineering and Design, 282, 144–157.

Le Pape, Y., Sanahuja, J. and Alsaid, M. H. F., (2020). "Irradiation-induced damage in concrete-forming aggregates: revisiting literature data through micromechanics." Materials and Structures 2020 53:3, 53(3), 1–35.

Le Pape, Y., Alsaid, M. H. F., Giorla, A. B., Maruyama, I., Kontani, O., Takizawa, M., Sawada, S., Ishikawa, S., Yasukouchi, J., Sato, O., Eto, J., Igari, T., Rosseel, T. M., Giorla, A. B., Remec, I., Wall, J. J., Sircar, M., Andrade, C., Ordonez, M. and Muto, S., (2018). "Rock-Forming Minerals Radiation-Induced Volumetric Expansion – Revisiting Literature Data." Journal of Advanced Concrete Technology, 16(5), 191–209.

Le Pape, Y., Giorla, A. and Sanahuja, J., (2016). "Combined Effects of Temperature and Irradiation on Concrete Damage." Journal of Advanced Concrete Technology, 14(3), 70–86.

Pomaro, B., (2016). "A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling." Modelling and Simulation in Engineering, 2016.

Pomaro, B., Xotta, G., Salomoni, V. A. and Majorana, C. E., (2022). "A thermo-hydro-mechanical numerical model for plain irradiated concrete in nuclear shielding." Materials and Structures/Materiaux et Constructions, 55(1), 1–28.

Primak, W., Fuchs, L. H. and Day, P., (1955). "Effects of Nuclear Reactor Exposure on Some Properties of Vitreous Silica and Quartz." Journal of the American Ceramic Society, 38(4), 135–139.

Primak, W., (1958). "Fast-neutron-induced changes in quartz and vitreous silica." Physical Review, 110(6), 1240–1254.

Saklani, N., Banwat, G., Spencer, B., Rajan, S., Sant, G. and Neithalath, N., (2021). "Damage development in neutron-irradiated concrete in a test reactor: Hygro-thermal and mechanical simulations." Cement and Concrete Research, 142, 106349.

Sasano, H., Maruyama, I., Sawada, S., Ohkubo, T., Murakami, K. and Suzuki, K., (2020). "Meso-Scale Modelling of the Mechanical Properties of Concrete Affected by Radiation-Induced Aggregate Expansion." Journal of Advanced Concrete Technology, 18(10), 648–677.

Silva, C. M., Rosseel, T. M. and Holliday, K. S., (2022). "Radiation-Induced Changes in Single Crystal Calcite and Dolomite: Mineral Analogues of Light Water Reactor, Nuclear Power Plant Concrete Aggregates." Journal of Physical Chemistry C, 126(1), 634–646.

Silva, C. M., Rosseel, T. M. and Kirkegaard, M. C., (2018). "Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates." Inorganic Chemistry, 57(6), 3329–3338.

Simon, I., (1957). "Structure of Neutron-Irradiated Quartz and Vitreous Silica." Journal of the American Ceramic Society, 40(5), 150–153.

Torrence, C. E., Giorla, A. B., Li, Y., Rodriguez, E. T., Arregui Mena, J. D., Rosseel, T. M. and Le Pape, Y., (2021). "MOSAIC: An Effective FFT-based Numerical Method to Assess Aging Properties of Concrete." Journal of Advanced Concrete Technology, 19(2), 149–167.

Wang, B., Yu, Y., Pignatelli, I., Sant, G. and Bauchy, M., (2015). "Nature of radiation-induced defects in quartz." The Journal of Chemical Physics, 143(2), 024505.

Weber, W. J., Ewing, R. C. and Wang, L.-M., (1994). "The radiation-induced crystalline-to-amorphous transition in zircon." Journal of Materials Research, 9(3), 688–698.

Wittels, M. C., (1957). "Structural behaviou of neutron irradiated quartz." Philosophical Magazine, 2(24), 1445–1461.

Wittels, M. and Sherrill, F. A., (1954). "Radiation Damage in SiO2 Structures." Physical Review, 93(5), 1117–1118. (PR) Retrieved from http://link.aps.org/doi/10.1103/PhysRev.93.1117.2

Wong, L. N. Y., Maruvanchery, V. and Liu, G., (2016). "Water effects on rock strength and stiffness degradation." Acta Geotechnica, 11(4), 713–737.

Yuan, X., Pulim, V. and Hobbs, L. W., (2001). "Molecular dynamics refinement of topologically generated reconstructions of simulated irradiation cascades in silica networks." Journal of Nuclear Materials, 289(1–2), 71–79.

ダウンロード

公開済


投稿日時: 2022-09-10 01:38:30 UTC

公開日時: 2022-09-29 01:59:51 UTC
研究分野
建築学・土木工学