Curvature Field Formulation of Gravity: Toward a Physical Reconstruction of Spacetime
Part II of the Curvature Field Series — From Quantum Curvature to Macroscopic Gravity
DOI:
https://doi.org/10.51094/jxiv.1579Keywords:
Curvature Field (C4), Phi–Curvature Field Equation (PCFE), Strong-gravity ring invariants (R,Θ), Event Horizon Telescope (EHT), ngEHT, Solar-System PPN / 1PN constraints, SPARC galaxy rotation curves, Cosmology snap-in (CMB, BAO, lensing), Variational taper (outer tail), Model selection (AIC, BIC, Bayes factor)Abstract
This paper (Part II) extends the “curvature field” hypothesis introduced in Introducing the Curvature Field Function (Part I) from the quantum domain to macroscopic gravity and tests it under a unified, fixed-policy pipeline. Using standardized invariants for strong gravity (R,Θ)(R,\Theta)(R,Θ) and linear-response descriptors (μ,Σ)(\mu,\Sigma)(μ,Σ), we assess SPARC rotation curves, EHT rings, Solar-System PPN, and a cosmology snap-in (CMB/BAO) without introducing a non-baryonic source term. The Curvature Field formulation (C4/PCFE) aligns with GR baselines within declared windows while offering a lean, data-facing alternative to halo degrees of freedom. All choices are preregistered and reproducible, and the framework invites further tests with forthcoming ngEHT and cosmology releases.
Conflicts of Interest Disclosure
The author declares no competing interests.Downloads *Displays the aggregated results up to the previous day.
References
I. Newton, Philosophiæ Naturalis Principia Mathematica (London, 1687). [English translation: Mathematical Principles of Natural Philosophy, University of California Press (1934)].
A. Einstein, Die Feldgleichungen der Gravitation, Annalen der Physik 49, 769–822 (1915).
K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1916), pp. 189–196. Reproduced at ADS Harvard Archive.
C. Brans and R. H. Dicke, Mach’s Principle and a Relativistic Theory of Gravitation, Phys. Rev. 124, 925 (1961).
M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophysical Journal 270, 365 (1983).
J. W. Moffat, Scalar–tensor–vector gravity theory, JCAP 2006(03), 004 (2006).
S. S. McGaugh, F. Lelli, and J. M. Schombert, Radial acceleration relation in rotationally supported galaxies, Phys. Rev. Lett. 117, 201101 (2016).
F. Lelli, S. S. McGaugh, and J. M. Schombert, SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves, Astron. J. 152, 157 (2016).
NASA JPL, GRACE Gravity Data Products, https://grace.jpl.nasa.gov/data/get-data/.
National Geospatial-Intelligence Agency (NGA), EGM2008 Earth Gravitational Model, https://earth-info.nga.mil/GandG/wgs84/index.html. Accessed: 26 Aug 2025.
NASA Science, Moon — By the Numbers, https://science.nasa.gov/moon/by-the-numbers/. Accessed: 24 Sep 2025.
NASA Solar System Exploration, Planet Compare, https://solarsystem.nasa.gov/planetcompare/. Accessed: 26 Aug 2025.
NASA Solar System Exploration, The Sun — By the Numbers, https://solarsystem.nasa.gov/sun-by-the-numbers/. Accessed: 26 Aug 2025.
SPARC Team, SPARC Data Portal, https://astroweb.case.edu/SPARC/ (accessed August 28, 2025).
Kim, Seung-il, Introducing the Curvature Field Function: Toward a Geometric Formulation of Wavefunction Collapse, jxiv (2025). doi:10.51094/jxiv.1522.
Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019). doi:10.3847/2041-8213/ab0ec7
Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett. 875, L6 (2019). doi:10.3847/2041-8213/ab1141
Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. VII. Polarization of the Ring, Astrophys. J. Lett. 910, L12 (2021). doi:10.3847/2041-8213/abe71d
Event Horizon Telescope Collaboration et al., First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 930, L12 (2022). doi:10.3847/2041-8213/ac6674
Event Horizon Telescope Collaboration et al., First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett. 930, L17 (2022). doi:10.3847/2041-8213/ac6756
Johnson, M. D., Akiyama, K., Blackburn, L., et al., Key Science Goals for the Next-Generation Event Horizon Telescope, Galaxies 11, 61 (2023). doi:10.3390/galaxies11030061
Cappellari, M., Emsellem, E., Krajnovi´c, D., McDermid, R. M., Scott, N., Verdoes Kleijn, G. A., Young, L. M., Alatalo, K., Bacon, R., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Khochfar, S., Kuntschner, H., Lablanche, P.-Y., Morganti, R., Naab, T., Oosterloo, T., Sarzi, M., Serra, P., & Weijmans, A.-M., The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria, Monthly Notices of the Royal Astronomical Society 413, 813-836 (2011). doi:10.1111/j.1365-2966.2010.18174.x
A. Sinha, A. Vijay, and U. Sinha, “On the superposition principle in interference experiments,” Scientific Reports, vol. 5, 10304 (2015). DOI:10.1038/srep10304
M.Kaur and M.Singh, Quantum double-double-slit experiment with momentum entangled photons, Scientific Reports 10, 11427 (2020). https://doi.org/10.1038/s41598-020-68181-1
Zeng, M. & Yong, E.H. (2017). Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Scientific Reports, 7, 12077.
Kolenderski, P., Scarcelli, G., Johnson, K. D., Hamel, D. R., Holloway, C., Shalm, L. K., Tisa, S., Tosi, A., Resch, K. J., & Jennewein, T. (2014). Time-resolved double-slit interference pattern measurement with entangled photons. Scientific Reports, 4, 4685.
Busnaina, J. H., Shi, Z., MacDonald, A., Dubynka, D., Nsanzineza, I., Hung, J. C. H., Chang, C. W. S., Clerk, A. A., & Wilson, C. M. (2024). Quantum simulation of the bosonic Kitaev chain. Nature Communications, 15, Article 47186. https://www.nature.com/articles/s41467-024-47186-8
Magaña-Loaiza, O. S., De Leon, I., Mirhosseini, M., Fickler, R., Safari, A., Mick, U., McIntyre, B., Banzer, P., Rodenburg, B., Leuchs, G., & Boyd, R. W. (2017). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 8, 13987. https://doi.org/10.1038/ncomms13987.
Namdar, A., Shadman, Z., & Sadeghi, S. M. (2021). Experimental Higher-Order Interference in a Nonlinear Triple Slit. https://arxiv.org/abs/2112.06965.
Hernquist, L., An Analytical Model for Spherical Galaxies and Bulges, Astrophys. J. 356, 359–364 (1990). doi:10.1086/168845.
Dehnen, W., A family of potential–density pairs for spherical galaxies and bulges, Mon. Not. R. Astron. Soc. 265, 250–256 (1993). doi:10.1093/mnras/265.1.250.
Sérsic, J. L., Atlas de galaxias australes, Observatorio Astronómico, Córdoba (1968).
Prugniel, P. & Simien, F., The fundamental plane of early-type galaxies: nonhomology of the spatial structure, Astron. Astrophys. 321, 111–122 (1997). ADS: 1997A&A...321..111P.
A. S. Bolton, S. Burles, L. V. E. Koopmans, T. Treu, R. Gavazzi, L. A. Moustakas, R. Wayth, and D. J. Schlegel, The Sloan Lens ACS Survey. V. The Full ACS Strong-Lens Sample, Astrophys. J. 682, 964–984 (2008). doi:10.1086/589327.
M. W. Auger, T. Treu, A. S. Bolton, R. Gavazzi, L. V. E. Koopmans, P. J. Marshall, K. Bundy, and L. A. Moustakas, The Sloan Lens ACS Survey. IX. Colors, Lensing, and Stellar Masses of Early-type Galaxies, Astrophys. J. 705, 1099–1115 (2009). doi:10.1088/0004-637X/705/2/1099.
A. S. Bolton, S. Burles, L. V. E. Koopmans, T. Treu, and D. J. Eisenstein, The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Galaxies and Their Lensed Emitters, Astrophys. J. 638, 703–724 (2006). ADS: 2006ApJ...638..703B ; arXiv:astro-ph/0511453 ; doi:10.1086/498884.
B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374–376 (2003).
J. G.Williams, S. G. Turyshev, and D. H. Boggs, Lunar Laser Ranging Tests of the Equivalence Principle, Class. Quantum Grav. 29, 184004 (2012).
S. G. Turyshev and J. G. Williams, Space-based tests of gravity with laser ranging, Int. J. Mod. Phys. D 16, 2165–2179 (2007).
K. Akiyama et al. (EHT Collaboration), The persistent shadow of the supermassive black hole of M87. II. Model comparisons and theoretical interpretations, Astron. Astrophys. 693, A265 (2025). doi:10.1051/0004-6361/202451296.
H. Jia, A. Lupsasca, A. Staines et al., Photon ring interferometric signatures beyond the universal ring, Phys. Rev. D 110, 083044 (2024). doi:10.1103/PhysRevD.110.083044.
R. K. Walia, A. He, D. Kapec, A. Lupsasca, Spacetime measurements with the photon ring, Phys. Rev. D 111, 104074 (2025). doi:10.1103/PhysRevD.111.104074.
A. Shlentsova et al., Imaging the event horizon of M87* from space on different baselines, Astron. Astrophys. 685, A84 (2024). doi:10.1051/0004-6361/202347214.
R. Abbott et al. (LIGO–Virgo–KAGRA Collaboration), GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run, Phys. Rev. X 13, 041039 (2023). doi:10.1103/PhysRevX.13.041039.
S. Birrer and T. Treu, Time-Delay Cosmography: Measuring the Hubble Constant with Strong Gravitational Lensing, Space Sci. Rev. 220, 72 (2024). doi:10.1007/s11214-024-01079-w.
A. J. Shajib et al. (TDCOSMO), TDCOSMO. XII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy, Astron. Astrophys. 673, A9 (2023). publisher page; arXiv:2301.02656.
X. Wang, P. Chen, T. Zhu, Is a photon ring invariably a closed structure? Eur. Phys. J. C 84, 527 (2024). doi:10.1140/epjc/s10052-024-13527-6.
Downloads
Posted
Submitted: 2025-09-30 18:09:36 UTC
Published: 2025-10-08 08:19:05 UTC
License
Copyright (c) 2025
seungil-il kim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.