Introducing the Curvature Field Function: Toward a Geometric Formulation of Wavefunction Collapse
Benchmarking the Sorkin Parameter κ in the Triple-Slit Experiment
DOI:
https://doi.org/10.51094/jxiv.1522Keywords:
curvature–phase field, wavefunction collapse, quantum interference, triple-slit experiment, Sorkin parameter κ, gain-invariant normalization (Version-2), Fraunhofer diffraction, nonclassical pathsAbstract
We introduce a curvature-phase field that encodes geometry-driven suppression in quantum interference and frames wavefunction collapse as the consumption of a finite curvature budget. The model couples a static curvature field Phi to the wave amplitude via “A squared equals one over one plus the squared gradient magnitude of Phi,” and links dynamics to a Lagrangian term, separating scale from shape. For a scale-free test, we benchmark the Sorkin parameter kappa(theta) from the triple-slit experiment of Sinha et al., comparing model kappa_PhiPsi to the experimental series kappa_exp using a gain-invariant Version-2 full-profile metric with a single global prefit. Using the reported photon parameters (lambda = 810 nm, w = 30 um, d = 100 um, L ~ 18–20 cm) and a fixed random seed, the model reproduces the analytic shape and attains about 96.4% concordance on kappa, while Gaussian and Bohmian baselines reach about 74.6% and 76.0%. Sensitivity sweeps (+/-10% in {w, d, L}) preserve shape correlation, and ablations (removing the curvature envelope or residual phase) systematically reduce agreement, consistent with a curvature-gradient mechanism. Central-intensity (CI) metrics are reported separately and are not mixed with kappa. These results support a geometric formulation of wavefunction collapse without ad hoc scale tuning.
Conflicts of Interest Disclosure
The author declares no competing interests.Downloads *Displays the aggregated results up to the previous day.
References
N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696–702 (1935). DOI:10.1103/PhysRev.48.696 Free PDF (CERN)
G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34, 470–491 (1986). DOI:10.1103/PhysRevD.34.470
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables I & II, Phys. Rev. 85, 166–193 (1952). DOI:10.1103/PhysRev.85.166
A. Ashtekar and T. A. Schilling, Geometrical Formulation of Quantum Mechanics, arXiv:gr-qc/9706069 (1997). https://arxiv.org/abs/gr-qc/9706069
Kocsis, S., et al., Observing the average trajectories of single photons in a two-slit interferometer, Science 332, 1170–1173 (2011). DOI:10.1126/science.1202218
L. Hackermüller et al., “Wave nature of biomolecules and fluorofullerenes,” Physical Review Letters 91, 090408 (2003). https://doi.org/10.1103/PhysRevLett.91.090408
J. Eglinton, F. Carollo, I. Lesanovsky, and K. Brandner, Stochastic Thermodynamics at the Quantum Classical Boundary, Quantum (accepted 2024). https://quantum-journal.org/papers/q-2024-09-26- 1486/pdf
Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y. & Scully, M.O., Delayed “choice” quantum eraser, Phys. Rev. Lett. 84, 1–5 (1999). DOI:10.1103/PhysRevLett.84.1
S. Tamate et al., “Observation of geometric phases in quantum erasers,” (2009). arXiv:0907.2289 (Experimental analysis of the theory in [11])
A. Sinha, A. Vijay, and U. Sinha, “On the superposition principle in interference experiments,” Scientific Reports, vol. 5, 10304 (2015). DOI:10.1038/srep10304
R. Sawant, J. Samuel, A. Sinha, S. Sinha, and U. Sinha, Nonclassical paths in quantum interference experiments, Phys. Rev. Lett. 113, 120406 (2014). DOI:10.1103/PhysRevLett.113.120406
T. W. B. Kibble, Geometrization of Quantum Mechanics, Commun. Math. Phys. 65, 189–201 (1979). DOI:10.1007/BF01225149 ProjectEuclid (Open Access PDF)
J. C. Garrison and E. M. Wright, Complex geometrical phases for dissipative systems, Phys. Lett. A 128, 177–181 (1988). DOI:10.1016/0375-9601(88)90905-X
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392, 45–57 (1984). DOI:10.1098/rspa.1984.0023
M. S. Sarandy and D. A. Lidar, Abelian and non-Abelian geometric phases in adiabatic open quantum systems, Phys. Rev. A 73, 062101 (2006). DOI:10.1103/PhysRevA.73.062101
J.A. Ferrari and E.M. Garbusi, “Phase-shifting (Sagnac) interferometer with external phase control,” Applied Optics 44, 4510–4512 (2005). https://doi.org/10.1364/AO.44.004510
M.Kaur and M.Singh, Quantum double-double-slit experiment with momentum entangled photons, Scientific Reports 10, 11427 (2020). https://doi.org/10.1038/s41598-020-68181-1
Zeng, M. & Yong, E.H. (2017). Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Scientific Reports, 7, 12077.
Kolenderski, P., Scarcelli, G., Johnson, K. D., Hamel, D. R., Holloway, C., Shalm, L. K., Tisa, S., Tosi, A., Resch, K. J., & Jennewein, T. (2014). Time-resolved double-slit interference pattern measurement with entangled photons. Scientific Reports, 4, 4685.
Moldoveanu, F. (2015). Quantum Mechanics from Invariance Principles. Journal of Physics: Conference Series, 626, 012067
Birrell, N. D., & Davies, P. C. W. (1984). Quantum Fields in Curved Space. Cambridge University Press.
Kiefer, C., & Polarski, D. (1998). Emergence of classicality for primordial fluctuations: Concepts and analogies. Annalen der Physik, 7(3), 137–158.
Holmström, M. & Wang, X.-D. (2015). Details of a Hybrid Model for the Interaction between the Solar Wind and Planets Implemented in FLASH. arXiv:1509.08744v1 [physics.space-ph].
Hossenfelder, S. (2012). Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16, 2.
M. Hatifi, Quantum Gravity Without Metric Quantization: From Hidden Variables to Hidden Spacetime Curvatures, arXiv:2502.08421 (2025). https://arxiv.org/abs/2502.08421
Boschero, J.C., Neumann, N.M. P., van der Schoot, W., & Phillipson, F. (2024). Performing Non-Local Phase Estimation with a Rydberg-Superconducting Qubit Hybrid. arXiv:2403.14647 [quant-ph].
Busnaina, J. H., Shi, Z., MacDonald, A., Dubynka, D., Nsanzineza, I., Hung, J. C. H., Chang, C. W. S., Clerk, A. A., & Wilson, C. M. (2024). Quantum simulation of the bosonic Kitaev chain. Nature Communications, 15, Article 47186. https://www.nature.com/articles/s41467-024-47186-8
De Raedt, H., Michielsen, K., & Hess, K. (2011). Multi-order interference is generally nonzero. https://arxiv.org/abs/1103.0121.
Magaña-Loaiza, O. S., De Leon, I., Mirhosseini, M., Fickler, R., Safari, A., Mick, U., McIntyre, B., Banzer, P., Rodenburg, B., Leuchs, G., & Boyd, R. W. (2016). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 8, 13987. https://doi.org/10.1038/ncomms13987.
Namdar, A., Shadman, Z., & Sadeghi, S. M. (2021). Experimental Higher-Order Interference in a Nonlinear Triple Slit. https://arxiv.org/abs/2112.06965.
Magaña-Loaiza, O. S., Gao, W., Perez-Leija, A., U’Ren, A. B., Busch, K., Christodoulides, D. N., & Boyd, R. W. (2021). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 12, 5059. https://www.nature.com/articles/s41467-021-25489-4.
Hong, M., Dawkins, R. B., Bertoni, B., You, C., & Magaña-Loaiza, O. S. (2024). Nonclassical near-field dynamics of surface plasmons. Nature Physics, 20(5), 830–835. https://doi.org/10.1038/s41567-024-02426-y.
Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 76, 1267 (2005). https://doi.org/10.1103/RevModPhys.76.1267
Bassi, A., Großardt, A., & Ulbricht, H. Gravitational decoherence. Class. Quantum Grav., 34(19), 193002 (2017). https://doi.org/10.1088/1361-6382/aa864f
X.-S. Ma, J.Kofler, A.Zeilinger, Delayed-choice gedanken experiments and their realizations, Rev. Mod. Phys. 88, 015005 (2016). DOI:10.1103/RevModPhys.88.015005
M.O. Scully, K.Drühl, Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics, Phys. Rev. A 25, 2208–2213 (1982). DOI:10.1103/PhysRevA.25.2208
Shalm, L. K. et al. (2015). Strong Loophole-Free Test of Local Realism, arXiv:1511.03189v1.
Rosenfeld, W., Burchardt, D., Garthoff, R., Redeker, K., Ortegel, N., Rau, M., & Weinfurter, H. (2017). Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Physical Review Letters, 119, 010402. DOI:10.1103/PhysRevLett.119.010402
CMS Collaboration, "Observation of quantum entanglement in top quark pair production", arXiv:2406.03976v2 (2024).
D. Gabor, A new microscopic principle, Nature 161, 777–778 (1948). DOI:10.1038/161777a0
A. Aspect, P. Grangier, and G. Roger, “Experimental Realization of Einstein-Podolsky- Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities,” Phys. Rev. Lett. 49, 1804 (1982). doi:10.1103/PhysRevLett.49.1804
G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81, 5039 (1998). doi:10.1103/PhysRevLett.81.5039
Di Martino, G., Sonnefraud, Y., Tame, M. S., Kena-Cohen, S., Dieleman, F., Özdemir, S. K., Kim, M. S., & Maier, S. A. (2014). Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys. Rev. Applied, 1(3), 034004. DOI:10.1103/PhysRevApplied.1.034004
Sinha, U., Couteau, C., Jennewein, T., Laflamme, R., and Weihs, G., Testing Born’s Rule in Quantum Mechanics with a Triple-Slit Experiment, arXiv:1007.4193v1 (2010). https://arxiv.org/abs/1007.4193
G. C. Ghirardi, P. Pearle, and A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42, 78 (1990).
L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165 (1989).
R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28, 581 (1996).
A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests, Rev. Mod. Phys. 85, 471 (2013).
M. Born and E. Wolf, Principles of Optics, Cambridge University Press (1999), see Ch. 3–4 for eikonal equation.
Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman Lectures on Physics, Vol. 3. Addison-Wesley. https://www.feynmanlectures.caltech.edu/
Downloads
Posted
Submitted: 2025-09-09 10:10:20 UTC
Published: 2025-09-26 00:22:23 UTC
License
Copyright (c) 2025
Seung-il Kim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.