Induction of endoplasmic reticulum stress by human cytosolic superoxide dismutase 1 in yeast cells
DOI:
https://doi.org/10.51094/jxiv.1505Keywords:
Neurodegenerative diseases, Unfolded protein response, Saccharomyces cerevisiaeAbstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, which triggers a transcriptome shift known as the unfolded protein response (UPR) commonly in eukaryotic species. Nevertheless, in some neurodegenerative diseases, the UPR is somehow induced by aggregation of cytosolic pathogenic proteins. To address the UPR induction mechanism by human superoxide dismutase 1 (hSOD1), the aggregation of which causes amyotrophic lateral sclerosis, here we used yeast Saccharomyces cerevisiae as a simple model organism. Expression of hSOD1 or its mutant increased UPR levels in S. cerevisiae cells carrying a knockout mutation of the STE24 gene, which encodes an ER-located membrane-integral protein that digests cytosolic proteins aberrantly translocated to the ER. Our findings cumulatively indicate that SOD1 induces ER stress and UPR by disturbing protein and lipid-membrane homeostasis in and on the ER.
Conflicts of Interest Disclosure
All authors declare that they have no conflicts of interest associated with this manuscript.Downloads *Displays the aggregated results up to the previous day.
References
Adams, A., Gottschling, D.E., Kaiser, C.A., Stearns, T. (1997). Methods in Yeast Genetics, 1997 : A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Ast, T., Michaelis, S., Schuldiner, M. (2016). The protease Ste24 clears clogged translocons. Cell,164, 103-114.
Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications.Yeast, 14, 115-132.
Chen, Y., Brandizzi, F. (2013). IRE1: ER stress sensor and cell fate executor. Trends Cell Biol, 23, 547-555.
Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., Hieter, P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene, 110, 119-122.
Epremyan, K.K., Mamaev, D.V., Zvyagilskaya, R.A. (2023). Alzheimer's disease: significant benefit from the yeast-based models. Int J Mol Sci, 24, 9791.
Gardner, B.M., Walter, P. (2011). Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science, 333, 1891-1894.
Giaever, G., Nislow, C. (2014). The yeast deletion collection: a decade of functional genomics. Genetics, 197, 451-465.
Goblirsch, B.R., Wiener, M.C. (2020). Ste24: An integral membrane protein zinc metalloprotease with provocative structure and emergent biology. J Mol Biol, 432, 5079-5090.
Halbleib, K., Pesek, K., Covino, R., Hofbauer, H.F., Wunnicke, D., Hänelt, I., Hummer G., Ernst, R. (2017). Activation of the unfolded protein response by lipid bilayer stress. Mol Cell, 67, 673-684.
Hayashi, Y., Homma, K., Ichijo, H. (2016). SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul, 60, 95-104.
Hetz, C., Papa, F.R. (2018). The unfolded protein response and cell fate control. Mol Cell, 69, 169-181.
Hosomi, A., Iida, K., Cho, T., Iida, H., Kaneko, M., Suzuki, T. (2020). The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in. J Biol Chem, 295, 10406-10419.
Hosomi, A., Okachi, C., Fujiwara, Y. (2023). Human SOD1 is secreted via a conventional secretion pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 666, 101-106.
Hwang, J., Qi, L. (2018). Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci, 43, 593-605.
Ishiwata-Kimata, Y., Kimata, Y. (2023). Fundamental and applicative aspects of the unfolded protein response in yeasts. J Fungi (Basel), 9, 989.
Kim, S., Kim, D.K., Jeong, S., Lee, J. (2022). The common cellular events in the neurodegenerative diseases and the associated role of endoplasmic reticulum stress. Int J Mol Sci, 23, 5894.
Kimata, Y., Ishiwata-Kimata, Y., Ito, T., Hirata, A., Suzuki, T., Oikawa, D., Takeuchi, M., Kohno, K. (2007). Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol, 179, 75-86.
Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y., Kohno, K. (2004). A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol, 167, 445-456.
Le, Q.G., Ishiwata-Kimata, Y., Phuong, T.H., Fukunaka, S., Kohno, K., Kimata, Y. (2021). The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress. Sci. Rep. 11, 4506.
Liguori, F., Amadio, S., Volonté, C. (2021). Where and why modeling amyotrophic lateral sclerosis. Int J Mol Sci, 22, 3977.
Mori, K. (2009). Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem, 146, 743-750.
Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota, T., Fukutomi, H., Noguchi, T., Matsuzawa A., Takeda T., Ichijo, H. (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22, 1451-1464.
Phuong, H.T., Ishiwata-Kimata, Y., Kimata, Y. (2023). An ER-accumulated mutant of yeast Pma1 causes membrane-related stress to induce the unfolded protein response. Biochem Biophys Res Commun, 667, 58-63.
Promlek, T., Ishiwata-Kimata, Y., Shido, M., Sakuramoto, M., Kohno, K., Kimata, Y. (2011). Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell, 22, 3520-3532.
Sikorski, R.S., Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19-27.
Tran, D.M., Takagi, H., Kimata, Y. (2019). Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants. Biosci. Biotechnol. Biochem. 83, 326-329.
Tsuburaya, N., Homma, K., Higuchi, T., Balia, A., Yamakoshi, H., Shibata, N. Nakamura, S., Nakagawa, H., Ikeda, S.I., Umezawa, N., Kato, N., Yokoshima, S., Shibuya, M., Shimonishi, M., Kojima, H., Okabe, T., Nagano, T., Naguro, I., Imamura, K., Inoue, H., Fujisawa, T., Ichijo, H. (2018). A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat Commun, 9 , 2668.
Urushitani, M., Ezzi, S.A., Matsuo, A., Tooyama, I., Julien, J. P. (2008). The endoplasmic reticulum-Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS. FASEB J, 22 , 2476-2487.
Walter, N.S., Gorki, V., Bhardwaj, R., Punnakkal, P. (2025). Endoplasmic reticulum stress: Implications in diseases. Protein J, 44, 147-161.
Wang, X.X., Chen, W.Z., Li, C., Xu, R.S. (2024). Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev Neurosci, 35, 549-563.
Wu, X., Rapoport, T.A. (2018). Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol, 53, 22-28.
Downloads
Posted
Submitted: 2025-09-01 11:11:50 UTC
Published: 2025-09-02 09:56:24 UTC
License
Copyright (c) 2025
Ngoc Trang Nguyen
Yuki Ishiwata-Kimata
Akira Hosomi
Yukio Kimata

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.