Preprint / Version 1

Understanding Fatality Risk in Traffic Accidents: RTS and Individual Characteristics in Near-Zero PTD Cases

##article.authors##

  • Katsushi Yoshii Freelance

DOI:

https://doi.org/10.51094/jxiv.1207

Keywords:

Revised Trauma Score (RTS), Preventable Trauma Death (PTD), Traffic Accident, Survival Probability Model, Psychological Stress

Abstract

This study aims to evaluate fatality risk in traffic accidents from a multifactorial perspective,
incorporating not only injury severity but also physiological signs (RTS) and individual characteristics (age and medical history). Particular attention is given to the “near-zero PTD group,” in which deaths occurred despite non-lethal injuries, to explore non-trauma-related fatal factors.
To assess the contribution of explanatory variables, several logistic regression models were constructed. The model using only ISS showed limited predictive power (Recall = 0.147, Pseudo R² = 0.335). By adding RTS and an age-based score, the model improved (Recall = 0.573, Pseudo R² = 0.557). Further enhancement was achieved by introducing an interaction term (age² × number of medical conditions²), leading to a substantial improvement (Recall = 0.874, Pseudo R² = 0.640), indicating that elderly individuals with multiple medical histories are at higher risk of death.
Additionally, RTS deterioration was found to be associated with psychological and environmental factors such as impact direction, nighttime occurrence, adverse weather, and alcohol use. These results suggest that RTS may reflect not only physiological trauma severity but also internal stress reactions triggered during the accident.
The findings indicate that future traffic safety strategies should address not only injury reduction, but also stress-related factors and provide targeted interventions for high-risk individuals, such as the elderly with preexisting conditions.

Conflicts of Interest Disclosure

Declare no conflicts of interest

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

吉井勝司. 自動車事故における負傷・死亡リスクの新指標: 既往歴と外傷以外の影響. Jxiv, 2024. https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/1119

西本哲也. 自動車へ全衝突形態対応の救命機能を搭載するための救急医療実態に基づく傷害予測アルゴリズムの構築とその実証実験 ―平成22年度(本報告)タカタ財団助成研究論文―. タカタ財団助成研究報告書, 2010. https://www.takatafound.or.jp/support/articles/pdf/111220_02.pdf

富永 茂, 西本 哲也, 阪本 雄一郎, 益子 邦洋. 交通外傷における日本人版予測生存率モデルの算出とその特徴解析. 日本交通医学会誌. 2022; 75(3): 123-134.

National Highway Traffic Safety Administration (NHTSA). Crash Investigation Sampling System. NHTSA. [オンライン]. 2025 [参照 2025年2月15日]. Available from: https://www.nhtsa.gov/crash-data-systems/crash-investigation-sampling-system

大江 良子, 村上 姫菜, 荒木 理子, 立岡 弓子, 一杉 正仁. 妊婦の高速道路運転時の胎児心拍数モニタリングによる胎内環境への影響の検証. 日本交通科学学会誌. 2023; 23(2): 27-32.

石井 亘, 飯塚 亮二, 一杉 正仁. 自動車乗員におけるシートベルト損傷の受傷機転と臨床的特徴の検討. 日本交通科学学会誌. 2019; 19(2): 35-41.

雨森 一朗, 松井 靖浩. AISコードを用いた実事故における車両乗員の受傷分布. 自動車技術会論文集. 2023; 54(3): 608-614. doi:10.11351/jsaeronbun.54.608

Posted


Submitted: 2025-04-25 04:54:51 UTC

Published: 2025-05-07 06:24:46 UTC
Section
Engineering in General