In-plane Thermoelectric Properties of MXene and poly(3,4-ethylenedioxythiophene)/poly 4-styrenesulfonate (PEDOT/PSS) Hybrid Films
DOI:
https://doi.org/10.51094/jxiv.1122Keywords:
Thermoelectric Conversion, Conducting Polymer, PEDOT/PSS, MXeneAbstract
We investigated the in-plane thermoelectric properties of hybrid films composed of Ti3C2-MXene and poly(3,4-ethylenedioxythiophene)/poly-4-styrene sulfonate (PEDOT/PSS). The Seebeck coefficient increased as the amount of cleaved MXene in the PEDOT/PSS matrix increased, and the power factor (PF) reached its maximum at a 5% MXene ratio. Furthermore, dimethyl sulfoxide (DMSO) rinse improved the electrical conductivities of the films, and then, a higher PF of 86.8 µW/mK2 was obtained. We evaluated the in-plane thermal conductivities of these hybrid films, to estimate in-plane figure of merit (zT). The highest in-plane zT of the films was 0.019, and this value is twice that of PEDOT/PSS film without MXene.
Conflicts of Interest Disclosure
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Downloads *Displays the aggregated results up to the previous day.
References
Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida Materials, 2015, 8, 732-750.
B. Zhang, J. Sun, H. E. Katz, F. Fang, and R. L. Opila ACS Appl.Mat.&Interface 2010, 5, 3170-3178.
G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, Nat. Mater. 2013, 12 719-723.
Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida Appl. Phys. Exp 2014, 7. 031601.
G.-H. Kim, J. Kim, and K. P. Pipe Appl. Phys. Lett. 2016, 108, 093301.
E. J. Bae, Y. H. Kang, K.-S. Jang and S. Y. Cho Sci Reports 2016, 6, 18805.
Z. Fan, D. Du, X. Guan, J. Ouyang, Nano Energy 2018, 51, 481-488.
A. C. Hinckley, et al., Adv. Electron. Mater.2021, 7, 2001190.
N. Toshima, and N. Jiravanichanun, J.Electro Mat. 2013, 42,1882-1887.
L. Wang, Z. Zhang, Y., Liu B. Wang, L. Fang, J. Qiu, K. Zhang and S. Wang Nat. Commun. 2018, 9, 3817.
H. Liu, P. Liu, M. Zhang, Z. Tian, N. Wang, Y. Liu and X. Zhang, RSC Adv. 2020, 10, 33965-33971.
L. Zhang, Y. Harima, I. Imae, Org. Electron. 2017,51, 304–307.
X. Cao, M. Zhang, Y. Yang, H. Deng and Q. Fu, Compos. Commun. 2021,27,100869.
L. Zhang, B. Xia, X.-L. Shi, W.-D. Liu, Y. Yang, X. Hou, X. Ye, G. Suo and Z.-G. Chen, Carbon 2022,196, 718.
X. Guan, W. Feng, X. Wang R. Venkatesh and J. Ouyang ACS Appl. Mater.Interfaces 2020,12, 13013-13020.
J. Park, Y. Ko, J. Jeong, J. H. Song, J. S. Park and J. Kwak, Mater. Res. Express., 2023, 10, 055504.
B. Zhang, P. W. Wong, J. Guo, Y. Zhou, Y. Wang, J. Sun, M. Jiang, Z. Wang and A. K. An, Nat. Commun. 2022,13,3315.
J. Zhang, et al., Adv. Mat. 2020, 32, 2001093.
Z. Ling,et al., Proc. Natl. Acad. Sci. U.S.A. 2014,111,16676-16681.
S. Wustoni, A. Saleh, J. K. El-Demellawi, K. A. Hama, V. Druet, N. Wehbe, Y. Zhang and S. Inal, APL Mater. 2020,8, 121105.
G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li, Y.J. Li and J.J Jiang ACS Appl. Mater. Interfaces 2021, 13, 57521-57531.
Z. Lin, H. Dang, C. Zhao, Y. Du, C. Chi, W. Ma, Y. Li and X. Zhang Nanoscale, 2022, 14, 9419-9430.
M. He, J. Ge, Z. Q. Lin, X. H. Feng, X. W. Wang, H. B. Lu, Y. L. Yang and F. Qiu, Energy Environ. Sci., 2012, 5, 8351–8358.
C. Kim, J. Y. Baek, D. H. Lopez, D. H. Kim and H. Kim, Appl. Phys. Lett., 2018, 113, 153901.
Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida RSC Adv. 2014,4,28802-28806.
M. Mukaida, Q. Wei and T. Ishida Synth. Met. 2016, 225, 64-69.
M. Mukaida, K. Kirihara and Q. Wei ACS Appl. Ener. Mater. 2019, 2, 6973-6978.
R. Liu and W. Li, ACS Omega, 2018,3, 2609–2617.
R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen, X. Hou, B. Wang, C.-T. Lin, N. Jiang and J. Yu, Sci. Rep. 2019,9, 9135.
J. Liu, X. Wang, D. Li, N.E. Coates, R.A. Segalman, D.G. Cahill Macromol. 2015, 48, 585-591.
Q. Wei, M. Mukaida, K. Kirihara and T. Ishida ACS Macro Lett. 2014,3, 948-952.
R. Kato, A. Maesono and R. P. Tye Int. J. Thermophys. 2001,22, 617-629.
C. Gayner and Y. Amouyal Adv. Funct. Mater. 2020, 30, 1901789.
Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M.S. Dargusch, J. Zou, Z.G. Chen, Adv. Mater. 2019,31, 1807916.
Y. Wang, X. Yang, A.G. Pandolfo, J. Ding, D. Li, Adv. Energy Mater. 2016, 6, 1600185.
T. Schultz, J. Niederhausen, R. Schlesinger, S. Sadofev, and N. Koch, J. Appl. Phys. 2018,123, 245501.
S. Guo, et al., Chem. Eur. J. 2012,18, 14760-14772.
S. van Reenen and M. Kemerink Org. Electron.2014,15, 2250-2255.
I. Petsagkourakis, et al., Adv. Sci., 2023,10, 2206954.
D. M. DeLongchamp, B. D. Vogt, C. M. Brooks, K. Kano, J. Obrzut, C. A. Richter, O. A. Kirillov E. K. Lin, Langmuir 2005, 21, 11480–11483.
A. Lenz, H. Kariis, A. Pohl, P. Persson and L. Ojamae Chem. Phys.2011, 384 44-51.
D. A. Mengistie, P.-C. Wang and C.-W. Chu J. Mater. Chem. A, 2013, 1, 9907-9915.
C. S. Pathak, J. P. Singh and R. Singh, Cur. Appl. Phys.2014,15,528-534.
D.M. Rowe, Renew. Energy 1999,16 ,1251-1256.
S. Horike, Q. Wei, K. Akaike, K. Kirihara, M. Mukaida, Y. Koshiba and K. Ishida Nat. Comm.2022, 13, 3517.
M. Matsumoto, K. Shima, R. Yamaguchi, M. Mukaida M. Tomita, T. Ishida, T. Watanabe, T. Fujigaya, STAM, 2021, 22, 272-279.
J. Park, J. G. Jang, K. Kang, S. H. Kim, and J. Kwak Adv. Sci. 2024, 11, 2308368.
C. Li, D. Luo, T. Wang, C. Shan, C. Li, K. Sun, A. K. K. Kyaw, and J. Ouyang, Small Struct. 2023, 4, 2300245.
Downloads
Posted
Submitted: 2025-03-06 01:08:42 UTC
Published: 2025-03-06 23:10:11 UTC
License
Copyright (c) 2025
Takao Ishida
Mihoko Motoki
Atsushi Yamamoto
Kazuki Imasato
Masanobu Miyata
Michihiro Ohta

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.