Ten Perspectives on Urban Wind Environments for the Safe Utilization of Urban Air Mobility
DOI:
https://doi.org/10.51094/jxiv.1107Keywords:
Air Mobility, Drones, Wind Environment, Urban Airflow, Safety, Environmental Impact, Architectural Design, Urban PlanningAbstract
Urban Air Mobility (UAM) development requires a precise understanding of urban wind environments and the establishment of safe flight operations. This paper organizes the relationship between UAM and urban wind environments into ten key perspectives, summarizing essential points, technological advancements, and research trends. It examines the effects of wind speed fluctuations and turbulence generated by buildings and structures in urban areas on the flight stability of UAM while also exploring methods for airflow prediction and wind environment control through urban design. Furthermore, it discusses evaluation techniques for urban airflow using numerical fluid and meteorological analysis, wind tunnel experiments, and observational technologies, as well as the potential of new predictive methods leveraging machine learning. Additionally, the paper presents challenges and countermeasures for UAM operations, including the mitigation and optimization of wind conditions through building layout and design, flight route planning, the influence of non-wind urban environmental factors, and establishing safety regulations.
Conflicts of Interest Disclosure
Part of this research was supported by a research grant from the Obayashi Foundation (2023).Downloads *Displays the aggregated results up to the previous day.
References
EASA, Urban air mobility. https://www.easa.europa.eu/en/what-is-uam. (Accessed 01-20 2025).
御法川, 白井, 水野, アーバンエアモビリティ 〜身近な空の新たな活用に向けて〜, 次世代移動体技術誌 1(1) (2020) 54-61.
NASA, Advanced Air Mobility Mission. https://www.nasa.gov/mission/aam/. (Accessed 01-20 2025).
FAA, Unmanned Aircraft System Traffic Management (UTM). https://www.faa.gov/uas/advanced_operations/traffic_management. (Accessed 01-20 2025).
Xinhua, China's low-altitude economy soars at high speed, 2024. https://english.news.cn/20241218/d336b2057b9545378f3df907fbc1bc4b/c.html. (Accessed 02-12 2025).
国土交通省, 空の移動革命に向けた官民協議会. https://www.mlit.go.jp/koku/koku_tk2_000007.html. (Accessed 01-21 2025).
M. Hassanalian, A. Abdelkefi, Classifications, applications, and design challenges of drones: A review, Progress in Aerospace Sciences 91 (2017) 99-131.
N. Bayomi, J.E. Fernandez, Eyes in the Sky: Drones Applications in the Built Environment under Climate Change Challenges, Drones 7(10) (2023) 637.
B. Davoudi, E. Taheri, K. Duraisamy, B. Jayaraman, I. Kolmanovsky, Quad-Rotor Flight Simulation in Realistic Atmospheric Conditions, AIAA Journal 58(5) (2020) 1992-2004.
H. Barber, A. Wall, I. Tabachnick, RPAS operator guidance and safety assurance tools for the urban environment: phase II, Laboratory Technical Report (National Research Council of Canada. Aerospace Research Centre. Aerodynamics Laboratory; no. LTR-AL-2022-0010, National Research Council of Canada. Aerospace Research Centre
National Research Council of Canada. Aerospace, 2022.
H. Barber, A. Wall, S. Kumar, R. McKercher, RPAS operator guidance and safety assurance tools for the urban environment: phase III, Laboratory Technical Report (National Research Council of Canada. Aerospace Research Centre. Aerodynamics Laboratory; no. LTR-AL-2023-0011, National Research Council of Canada. Aerospace Research Centre
National Research Council of Canada. Aerospace, 2023.
H. Barber, A. Wall, C. National Research Council of Canada. Aerospace Research, Urban airflow: what drone pilots need to know, Laboratory Technical Report (National Research Council of Canada. Aerospace. Aerodynamics Laboratory); no. LTR-AL-2020-0075, National Research Council of Canada. Aerospace, 2021.
A. Mohamed, M. Marino, S. Watkins, J. Jaworski, A. Jones, Gusts Encountered by Flying Vehicles in Proximity to Buildings, Drones 7(1) (2022) 22.
C. Purtell, S.-J. Hong, B. Hiatt, Bibliometric analysis on advanced air mobility and drones, Journal of Air Transport Management 116 (2024) 102569.
U. Nations, World Urbanization Prospects: The 2018 Revision, United Nations, 2019.
R. Berger, Urban air mobility: The rise of a new mode of transportation, 2018.
NASA, Urban Air Moblity (UAM) Market Study, NASA, 2018.
A. Goodchild, J. Toy, Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO 2 emissions in the delivery service industry, Transportation Research Part D: Transport and Environment 61 (2018) 58-67.
W.-C. Chiang, Y. Li, J. Shang, T.L. Urban, Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization, Applied Energy 242 (2019) 1164-1175.
T. Ezaki, K. Fujitsuka, N. Imura, K. Nishinari, Drone-based vertical delivery system for high-rise buildings: Multiple drones vs. a single elevator, Communications in Transportation Research 4 (2024) 100130.
L. Wang, X. Deng, J. Gui, P. Jiang, F. Zeng, S. Wan, A review of Urban Air Mobility-enabled Intelligent Transportation Systems: Mechanisms, applications and challenges, Journal of Systems Architecture 141 (2023) 102902.
G. Tmušić, S. Manfreda, H. Aasen, M.R. James, G. Gonçalves, E. Ben-Dor, A. Brook, M. Polinova, J.J. Arranz, J. Mészáros, R. Zhuang, K. Johansen, Y. Malbeteau, I.P. de Lima, C. Davids, S. Herban, M.F. McCabe, Current Practices in UAS-based Environmental Monitoring, Remote Sensing 12(6) (2020) 1001.
H. Yao, R. Qin, X. Chen, Unmanned Aerial Vehicle for Remote Sensing Applications—A Review, Remote Sensing 11(12) (2019) 1443.
J. Seo, L. Duque, J. Wacker, Drone-enabled bridge inspection methodology and application, Automation in Construction 94 (2018) 112-126.
N. Bayomi, S. Nagpal, T. Rakha, J.E. Fernandez, Building envelope modeling calibration using aerial thermography, Energy and Buildings 233 (2021) 110648.
T. Rakha, Y. El Masri, K. Chen, P. De Wilde, 3D drone-based time-lapse thermography: a case study of roof vulnerability characterization using photogrammetry and performance simulation implications, Proceedings of Building Simulation 2021: 17th Conference of IBPSA, 2021.
T. Rakha, A. Gorodetsky, Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones, Automation in Construction 93 (2018) 252-264.
B. Huang, J. Liu, Z. Li, X. Wang, X. Liu, J. Dong, Q. Cai, O. Pu, T. Bao, Prediction and visualization of 3D wake field of a rectangular high-rise building in tropical island cities based on UAV measurements, Building and Environment 267 (2025) 112218.
W. Thielicke, W. Hübert, U. Müller, M. Eggert, P. Wilhelm, Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer, Atmospheric Measurement Techniques 14(2) (2021) 1303-1318.
J. Burgues, S. Marco, Environmental chemical sensing using small drones: A review, Sci Total Environ 748 (2020) 141172.
J.T. Shaw, A. Shah, H. Yong, G. Allen, Methods for quantifying methane emissions using unmanned aerial vehicles: a review, Philos Trans A Math Phys Eng Sci 379(2210) (2021) 20200450.
Y. Ishida, M. Fujiyama, H. Kobayashi, Estimation of Longwave Radiation Intensity Emitted from Urban Obstacles in Each Direction Using Drone-Based Photogrammetry, Remote Sensing 16(21) (2024) 4017.
J. Naughton, W. McDonald, Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations, Remote Sensing 11(14) (2019) 1722.
J. Ye, J. Wang, P. Lv, Mutual Aerodynamic Interference Mechanism Analysis of an “X” Configuration Quadcopter, Aerospace 8(11) (2021) 349.
J. Ye, J. Wang, T. Song, Z. Wu, P. Tang, Nonlinear Modeling the Quadcopter Considering the Aerodynamic Interaction, IEEE Access 9 (2021) 134716-134732.
N.L. Oo, D. Zhao, M. Sellier, X. Liu, Experimental investigation on turbulence effects on unsteady aerodynamics performances of two horizontally placed small-size UAV rotors, Aerospace Science and Technology 141 (2023) 108535.
T.R. Oke, G. Mills, A. Christen, J.A. Voogt, Urban Climates, 2017.
S. Yang, L. Wang, T. Stathopoulos, A.M. Marey, Urban microclimate and its impact on built environment – A review, Building and Environment 238 (2023) 110334.
H. Barber, A. Wall, G.L. Larose, S. Schajnoha, RPAS operations in urban airflow: Efficient modelling of representative wind speed variations along a flight path through a flow field with changing turbulence characteristics, Journal of Wind Engineering and Industrial Aerodynamics 247 (2024) 105702.
S.-J. Mei, J.-T. Hu, D. Liu, F.-Y. Zhao, Y. Li, H.-Q. Wang, Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: Plume merging mechanism, Building and Environment 131 (2018) 32-43.
H. Yeo, S. Lee, Impact of heterogeneous building arrangement on local turbulence escalation, Building and Environment 236 (2023) 110217.
B. Blocken, P. Moonen, T. Stathopoulos, J. Carmeliet, Numerical Study on the Existence of the Venturi Effect in Passages between Perpendicular Buildings, Journal of Engineering Mechanics 134(12) (2008) 1021-1028.
W. Wang, T. Okaze, Statistical analysis of low-occurrence strong wind speeds at the pedestrian level around a simplified building based on the Weibull distribution, Building and Environment 209 (2022) 108644.
M.A. bin Zainol, W. Wang, N. Ikegaya, Similarity of the low-occurrence wind profiles within urban turbulent boundary layers of uniform and non-uniform height block arrays, Building and Environment 267 (2025) 112138.
S. Rajendran, S. Srinivas, Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities, Transportation Research Part E: Logistics and Transportation Review 143 (2020) 102090.
Q. Zou, Z. Li, X. Zeng, C. Wang, F. Zou, The analysis of characteristics of wind field on roof based on field measurement, Energy and Buildings 240 (2021) 110877.
H. Kawai, Local peak pressure and conical vortex on building, Journal of Wind Engineering and Industrial Aerodynamics 90(4-5) (2002) 251-263.
Q. Zou, Z.N. Li, F. Zou, X. Zeng, C. Wang, Y.Y. Pan, A study on the characteristics of roof wind field by wind tunnel test, Journal of Building Engineering 43 (2021) 103155.
A. Gupta, T. Stathopoulos, P. Saathoff, Wind tunnel investigation of the downwash effect of a rooftop structure on plume dispersion, Atmospheric Environment 46 (2012) 496-507.
Y. Masuyama, Y. Uematsu, O. Nakamura, Y. Okuda, Characteristics of local wind forces on the edges of signboards installed on the rooftops of buildings, Journal of Wind Engineering and Industrial Aerodynamics 206 (2020) 104299.
H. Kikumoto, R. Ooka, H. Sugawara, J. Lim, Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions, Journal of Wind Engineering and Industrial Aerodynamics 164 (2017) 13-21.
K. Sasaki, M. Inoue, T. Shimura, M. Iguchi, In Situ, Rotor-Based Drone Measurement of Wind Vector and Aerosol Concentration in Volcanic Areas, Atmosphere 12(3) (2021) 376.
Y. Tominaga, M. Shirzadi, Wind tunnel measurement of three-dimensional turbulent flow structures around a building group: Impact of high-rise buildings on pedestrian wind environment, Building and Environment 206 (2021) 108389.
W.H. Snyder, Similarity criteria for the application of fluid models to the study of air pollution meteorology, Boundary-Layer Meteorology 3(1) (1972) 113-134.
B. Blocken, T. Stathopoulos, J.P.A.J. van Beeck, Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment, Building and Environment 100 (2016) 50-81.
A.S. Dar, G. Armengol Barcos, F. Porté-Agel, An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment, Renewable Energy 193 (2022) 1049-1061.
R. Kellnerová, L. Kukačka, K. Jurčáková, V. Uruba, Z. Jaňour, PIV measurement of turbulent flow within a street canyon: Detection of coherent motion, Journal of Wind Engineering and Industrial Aerodynamics 104-106 (2012) 302-313.
B. Blocken, C. Gualtieri, Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics, Environmental Modelling & Software 33 (2012) 1-22.
Y. Tominaga, CFD simulations of turbulent flow and dispersion in built environment: A perspective review, Journal of Wind Engineering and Industrial Aerodynamics 249 (2024) 105741.
S. Liu, W. Pan, X. Zhao, H. Zhang, X. Cheng, Z. Long, Q. Chen, Influence of surrounding buildings on wind flow around a building predicted by CFD simulations, Building and Environment 140 (2018) 1-10.
Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics 96(10-11) (2008) 1749-1761.
Y. Li, W. Wang, T. Okaze, Evaluation of polyhedral mesh performance for large-eddy simulations of flow around an isolated building within an unstable boundary layer, Building and Environment 235 (2023) 110207.
Y. Zhao, L.W. Chew, A. Kubilay, J. Carmeliet, Isothermal and non-isothermal flow in street canyons: A review from theoretical, experimental and numerical perspectives, Building and Environment 184 (2020) 107163.
B. Blocken, LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?, Building Simulation 11(5) (2018) 821-870.
日本建築学会, 都市の風環境予測のためのCFDガイドブック, 日本建築学会2020.
M. Saeedi, B.-C. Wang, Large-eddy simulation of turbulent flow and dispersion over a matrix of wall-mounted cubes, Physics of Fluids 27(11) (2015) 115104.
T. Okaze, H. Kikumoto, H. Ono, M. Imano, N. Ikegaya, T. Hasama, K. Nakao, T. Kishida, Y. Tabata, K. Nakajima, R. Yoshie, Y. Tominaga, Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics, Building and Environment 202 (2021) 108021.
A. Abd Razak, A. Hagishima, N. Ikegaya, J. Tanimoto, Analysis of airflow over building arrays for assessment of urban wind environment, Building and Environment 59 (2013) 56-65.
G.-n. Dong, T.-g. Chen, C.-j. Ren, K. Wang, Wind tunnel investigation of wind reduction effect under porous fences protection, Journal of Wind Engineering and Industrial Aerodynamics 232 (2023) 105250.
A.O. Mahgoub, S. Ghani, Numerical and experimental investigation of utilizing the porous media model for windbreaks CFD simulation, Sustainable Cities and Society 65 (2021) 102648.
V. Pappa, D. Bouris, W. Theurer, C. Gromke, A wind tunnel study of aerodynamic effects of façade and roof greening on air exchange from a cubic building, Building and Environment 231 (2023) 110023.
R. Buccolieri, J.-L. Santiago, E. Rivas, B. Sanchez, Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects, Urban Forestry & Urban Greening 31 (2018) 212-220.
C. Lin, R. Ooka, H. Kikumoto, C. Flageul, Y. Kim, Y. Wang, A. Maison, Y. Zhang, K. Sartelet, Large-eddy simulations on pollutant reduction effects of road-center hedge and solid barriers in an idealized street canyon, Building and Environment 241 (2023) 110464.
Y.-d. Huang, M.-z. Li, S.-q. Ren, M.-j. Wang, P.-y. Cui, Impacts of tree-planting pattern and trunk height on the airflow and pollutant dispersion inside a street canyon, Building and Environment 165 (2019) 106385.
C. Gromke, B. Ruck, Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions, Boundary-Layer Meteorology 144(1) (2012) 41-64.
S. Fellini, M. Marro, A.V. Del Ponte, M. Barulli, L. Soulhac, L. Ridolfi, P. Salizzoni, High resolution wind-tunnel investigation about the effect of street trees on pollutant concentration and street canyon ventilation, Building and Environment 226 (2022) 109763.
C. YongBo, M. YueSong, Y. JianQiao, S. XiaoLong, X. Nuo, Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm, Neurocomputing 266 (2017) 445-457.
S. Kataoka, S. Suzuki, A Study on Path Planning for Autonomous Drones Considering Wind Risk, 日本ロボット学会誌 40(10) (2022) 915-923.
C. White, E.W. Lim, S. Watkins, A. Mohamed, M. Thompson, A feasibility study of micro air vehicles soaring tall buildings, Journal of Wind Engineering and Industrial Aerodynamics 103 (2012) 41-49.
K. Sundar, S. Rathinam, Algorithms for Routing an Unmanned Aerial Vehicle in the Presence of Refueling Depots, IEEE Transactions on Automation Science and Engineering 11(1) (2014) 287-294.
W.P. Coutinho, M. Battarra, J. Fliege, The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review, Computers & Industrial Engineering 120 (2018) 116-128.
T.R. Beal, Digital simulation of atmospheric turbulence for Dryden and von Karman models, Journal of Guidance, Control, and Dynamics 16(1) (1993) 132-138.
Y. Tominaga, Flow around a high-rise building using steady and unsteady RANS CFD: Effect of large-scale fluctuations on the velocity statistics, Journal of Wind Engineering and Industrial Aerodynamics 142 (2015) 93-103.
J. Liu, J. Niu, C.M. Mak, Q. Xia, Detached eddy simulation of pedestrian-level wind and gust around an elevated building, Building and Environment 125 (2017) 168-179.
H. Jia, H. Kikumoto, Partially averaged Navier-Stokes simulation of flow around an isolated building model with a 1:1:2 shape, Building and Environment 223 (2022) 109506.
J. Stam, Stable Fluids, Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (1999) 121–128.
M. Mortezazadeh, L.L. Wang, M. Albettar, S. Yang, CityFFD – City fast fluid dynamics for urban microclimate simulations on graphics processing units, Urban Climate 41 (2022) 101063.
R. Li, Z. Liu, Y. Zhao, Y. Wu, J. Niu, L. Wang, N. Gao, Fast fluid dynamics simulation of airflow around a single bluff body under different turbulence models and discretization schemes, Building and Environment 219 (2022) 109235.
M. Han, R. Ooka, H. Kikumoto, Validation of lattice Boltzmann method-based large-eddy simulation applied to wind flow around single 1:1:2 building model, Journal of Wind Engineering and Industrial Aerodynamics 206 (2020) 104277.
N.H. Ahmad, A. Inagaki, M. Kanda, N. Onodera, T. Aoki, Large-Eddy Simulation of the Gust Index in an Urban Area Using the Lattice Boltzmann Method, Boundary-Layer Meteorology 163(3) (2017) 447-467.
H.W. Lean, N.E. Theeuwes, M. Baldauf, J. Barkmeijer, G. Bessardon, L. Blunn, J. Bojarova, I.A. Boutle, P.A. Clark, M. Demuzere, P. Dueben, I.L. Frogner, S. de Haan, D. Harrison, C.v. Heerwaarden, R. Honnert, A. Lock, C. Marsigli, V. Masson, A. McCabe, M.v. Reeuwijk, N. Roberts, P. Siebesma, P. Smolíková, X. Yang, The hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100‐m scale weather and climate models, Quarterly Journal of the Royal Meteorological Society 150(765) (2024) 4671-4708.
R. Wilby, S. Charles, E. Zorita, B. Timbal, P. Whetton, L. Mearns, Guidelines for use of climate scenarios developed from statis-tical downscaling methods, 2004.
H. Kikumoto, R. Ooka, Y. Arima, T. Yamanaka, Study on the future weather data considering the global and local climate change for building energy simulation, Sustainable Cities and Society 14 (2015) 404-413.
S. Iizuka, Y. Xuan, C. Takatori, H. Nakaura, A. Hashizume, Environmental impact assessment of introducing compact city models by downscaling simulations, Sustainable Cities and Society 63 (2020) 102424.
S. Iizuka, Future environmental assessment and urban planning by downscaling simulations, Journal of Wind Engineering and Industrial Aerodynamics 181 (2018) 69-78.
M. Tewari, H. Kusaka, F. Chen, W.J. Coirier, S. Kim, A.A. Wyszogrodzki, T.T. Warner, Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion, Atmospheric Research 96(4) (2010) 656-664.
H. Kusaka, R. Ikeda, T. Sato, S. Iizuka, T. Boku, Development of a Multi‐Scale Meteorological Large‐Eddy Simulation Model for Urban Thermal Environmental Studies: The “City‐LES” Model Version 2.0, Journal of Advances in Modeling Earth Systems 16(10) (2024) e2024MS004367.
R.J. Davy, M.J. Woods, C.J. Russell, P.A. Coppin, Statistical Downscaling of Wind Variability from Meteorological Fields, Boundary-Layer Meteorology 135(1) (2010) 161-175.
X. Wang, C. Hu, H. Kikumoto, H. Jia, K. Nakao, R. Ooka, Data extension of high-resolution wind speed database by fusing meteorological observation and local objective analysis data with POD–LSE, Journal of Wind Engineering and Industrial Aerodynamics 252 (2024) 105812.
Y. Yasuda, R. Onishi, K. Matsuda, Super-resolution of three-dimensional temperature and velocity for building-resolving urban micrometeorology using physics-guided convolutional neural networks with image inpainting techniques, Building and Environment 243 (2023) 110613.
E. Rocha Rodrigues, I. Oliveira, R. Cunha, M. Netto, DeepDownscale: A Deep Learning Strategy for High-Resolution Weather Forecast, 2018 IEEE 14th International Conference on e-Science (e-Science), 2018, pp. 415-422.
K. Höhlein, M. Kern, T. Hewson, R. Westermann, A comparative study of convolutional neural network models for wind field downscaling, Meteorological Applications 27(6) (2020) e1961.
O. Miralles, D. Steinfeld, O. Martius, A.C. Davison, Downscaling of Historical Wind Fields over Switzerland Using Generative Adversarial Networks, Artificial Intelligence for the Earth Systems 1(4) (2022) e220018.
B. Zhang, R. Ooka, H. Kikumoto, C. Hu, T.K.T. Tse, Towards real-time prediction of velocity field around a building using generative adversarial networks based on the surface pressure from sparse sensor networks, Journal of Wind Engineering and Industrial Aerodynamics 231 (2022) 105243.
H. Gao, G. Hu, D. Zhang, W. Jiang, K.T. Tse, B.R. Noack, SiGAN: A 3D sensor importance deep generative model for urban wind flow field monitoring, Building and Environment 262 (2024) 111787.
C. Hu, H. Kikumoto, B. Zhang, H. Jia, Fast estimation of airflow distribution in an urban model using generative adversarial networks with limited sensing data☆, Building and Environment 249 (2024) 111120.
M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019) 686-707.
C. Hu, H. Jia, C. Lin, C. Wei, Y. Wang, H. Kikumoto, Efficient Analysis of Airflow Distribution Under Multiple Wind Directions Using a Physics-Informed Neural Network: Mean Flow Around Two-Dimensional Isolated Building, (2024).
C. Hou, L. Marra, G.Y.C. Maceda, P. Jiang, J. Chen, Y. Liu, G. Hu, J. Chen, A. Ianiro, S. Discetti, A. Meilán-Vila, B.R. Noack, Machine-learned flow estimation with sparse data -- exemplified for the rooftop of a UAV vertiport, (2024).
Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier Neural Operator for Parametric Partial Differential Equations, arXiv (2021) 2010.08895.
W. Peng, S. Qin, S. Yang, J. Wang, X. Liu, L. Wang, Fourier neural operator for real-time simulation of 3D dynamic urban microclimate, Building and Environment 248 (2024) 111063.
C.W. Kent, S. Grimmond, J. Barlow, D. Gatey, S. Kotthaus, F. Lindberg, C.H. Halios, Evaluation of Urban Local-Scale Aerodynamic Parameters: Implications for the Vertical Profile of Wind Speed and for Source Areas, Boundary Layer Meteorol 164(2) (2017) 183-213.
佐々木, 松井, ドップラーライダ観測による東京都心部の高高度風況把握, 風工学研究論文集 26 (2020) 17-24.
H. Jia, C. Hu, H. Kikumoto, Effects of sensor configuration optimization on airflow estimation in urban environment: A case study with a building group model, Sustainable Cities and Society 98 (2023) 104840.
国土交通省, Advanced Air Mobility in JAPAN 2021, 2021.
M.J. Boyle, The Race for Drones, Orbis 59(1) (2015) 76-94.
G. Sinibaldi, L. Marino, Experimental analysis on the noise of propellers for small UAV, Applied Acoustics 74(1) (2013) 79-88.
Y. Yang, Y. Liu, H. Hu, X. Liu, Y. Wang, E.J.G. Arcondoulis, Z. Li, Experimental study on noise reduction of a wavy multi-copter rotor, Applied Acoustics 165 (2020) 107311.
D. Cawthorne, P.M. Juhl, Designing for Calmness: Early Investigations into Drone Noise Pollution Management, 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022, pp. 839-848.
E. Shima, J. Sun, H. Liu, K. Yonezawa, H. Kaneko, Aeroacoustics, Psychoacoustics, and Aerodynamic Characteristics of Innovative Looped Propellers Using Catenary Curves, 30th AIAA/CEAS Aeroacoustics Conference (2024), 2024.
A.W. Christian, R. Cabell, Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise, 23rd AIAA/CEAS Aeroacoustics Conference, 2017.
R. Clarke, Understanding the drone epidemic, Computer Law & Security Review 30(3) (2014) 230-246.
J. Nicoll, T. Hunt, Woman comes eye to eye with camouflaged drone peeping in her bedroom window, The Sydney Morning Herald, 2018.
ロボティア編集部, 英警察の内部資料「英国でドローンを使った犯罪が急増中」, 2016. https://roboteer-tokyo.com/archives/5453/2. (Accessed 02-14 2025).
神戸新聞NEXT, ドローンで露天風呂盗撮か 女性客不安、県内で摘発事例なし, 神戸新聞NEXT, 2021.
総務省, ドローンによる撮影映像等のインターネット上での取り扱いに係るガイドライン, 2015.
I. Shayea, P. Dushi, M. Banafaa, R.A. Rashid, S. Ali, M.A. Sarijari, Y.I. Daradkeh, H. Mohamad, Handover Management for Drones in Future Mobile Networks-A Survey, Sensors (Basel) 22(17) (2022) 6424.
L.D.P. Pugliese, F. Guerriero, G. Macrina, Using drones for parcels delivery process, Procedia Manufacturing 42 (2020) 488-497.
D.S. Nithya, G. Quaranta, V. Muscarello, M. Liang, Review of Wind Flow Modelling in Urban Environments to Support the Development of Urban Air Mobility, Drones 8(4) (2024) 147.
S. Giersch, O. El Guernaoui, S. Raasch, M. Sauer, M. Palomar, Atmospheric flow simulation strategies to assess turbulent wind conditions for safe drone operations in urban environments, Journal of Wind Engineering and Industrial Aerodynamics 229 (2022) 105136.
M. Gianfelice, H. Aboshosha, T. Ghazal, Real-time Wind Predictions for Safe Drone Flights in Toronto, Results in Engineering 15 (2022) 100534.
EASA, Study on the societal acceptance of Urban Air Mobility in Europe, European Union Aviation Safety Agency, 2021.
Downloads
Posted
Submitted: 2025-02-26 00:49:23 UTC
Published: 2025-02-26 08:34:19 UTC
License
Copyright (c) 2025
Hideki Kikumoto
Chao Lin
Hongyuan Jia
Mahiro Iwabuchi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.