Preprint / Version 1

Publication journals of research on wasp spider, Argiope bruennichi

specialized or general?

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.1099

Keywords:

Academic Journals, Arachnology, Scholarly Publishing

Abstract

This original research article discusses the publication trends of research on the wasp spider, Argiope bruennichi (Scopoli, 1772), in specialized arachnological journals versus general scientific journals. Context on arachnological journals and their role in publishing spider-related research is introduced. It also introduces A. bruennichi as a widely recognized and easily identifiable spider species distributed across the Palearctic realm. The present study analyzed research articles published from 2019 to 2021 using Google Scholar, focusing on papers that included 'Argiope bruennichi' in their content. The results showed that a total of 79 research articles were identified during this period. Interestingly, the majority of these articles were published in general scientific journals rather than specialized arachnological journals. In 2019, 79% of the articles were published in general journals, while in 2020 and 2021, the percentages were 86% and 81% respectively. Upon careful analysis of the document, several unique and interesting insights emerge. First, this study highlights a shift in publication trends, with more spider-related research appearing in interdisciplinary journals rather than specialized arachnological publications. This suggests a growing interest in spider research across various scientific disciplines. Second, the choice of A. bruennichi as a focal species is noteworthy due to its wide distribution and accessibility, making it valuable for both expert and amateur studies. Lastly, the document points out the potential impact of new open-access online scientific journals on the relative prominence of traditional arachnological journals, indicating a changing landscape in scientific publishing within this field.

Conflicts of Interest Disclosure

The author has no conflicts of interest to declare.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Afzal, G., Mustafa, G., Mushtaq, S., & Jamil, A. (2020). DNA barcodes of Southeast Asian spiders of wheat agro-ecosystem. Pakistan Journal of Zoology, 52(4), 1433–1441. https://doi.org/10.17582/journal.pjz/20180411120453

Baba, Y. G., Tanaka, K., & Kusumoto, Y. (2019). Changes in spider diversity and community structure along abandonment and vegetation succession in rice paddy ecosystems. Ecological Engineering, 127, 235–244. https://doi.org/10.1016/j.ecoleng.2018.12.007

Branco, V. V., Morano, E., & Cardoso, P. (2019). An update to the Iberian spider checklist (Araneae). Zootaxa, 4614(2), 201–254. https://doi.org/10.11646/zootaxa.4614.2.1

Breitling, R. (2021). A completely resolved phylogenetic tree of British spiders. bioRxiv, 32 pp. https://doi.org/10.1101/2021.03.12.434792

Breslauer, D. N. (2020). Recombinant protein polymers: a coming wave of personal care ingredients. ACS Biomaterials Science & Engineering, 6(11), 5980–5986. https://doi.org/10.1021/acsbiomaterials.0c01038

Cerca, J., Armstrong, E. E., Vizueta, J., Fernández, R., Dimitrov, D., Petersen, B., Prost, S., Rozas, J., Petrov, D., & Gillespie, R. G. (2021). The Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spiders. Genome Biology and Evolution, 13(12), evab262 (17 pp.). https://doi.org/10.1093/gbe/evab262

Cianferoni, F., Graziani, F., & Ceccolini, F. (2021). Checklist and new records of spiders (Araneae) from Cephalonia and Ithaka islands (Greece). Biharean Biologist, 15(2), 80–86. https://biozoojournals.ro/bihbiol/v15n2.html

Cordellier, M., Schneider, J. M., Uhl, G., & Posnien, N. (2020). Sex differences in spiders: from phenotype to genomics. Development Genes and Evolution, 230(2), 155–172. https://doi.org/10.1007/s00427-020-00657-6

Cory, A.-L., & Schneider, J. M. (2020). Males of a sexually cannibalistic spider chemically assess relative female quality. BMC Evolutionary Biology, 20, 90 (12 pp.). https://doi.org/10.1186/s12862-020-01657-w

Deghiche-Diab, N., Deghiche, L., & Belhamra, M. (2020). Study of spontaneous plants and their associated arthropods in Ziban oases agroecosystem, Biskra-Algeria. IOBC/WPRS Bulletin, 151, 127–134. https://www.cabidigitallibrary.org/doi/full/10.5555/20219986074

Dimitrov, D., & Hormiga, G. (2021). Spider Diversification Through Space and Time. Annual Review of Entomology, 66, 225–241. https://doi.org/10.1146/annurev-ento-061520-083414

Etirli, E., Koç, H., & Sancak, Z. (2019). New records of spiders (Arachnida: Araneae) from Sinop province, Turkey, including an annotated list of species. Kastamonu University Journal of Forestry Faculty, 19(1), 11–34. https://doi.org/10.17475/kastorman.543393

Fateryga, A. V., Kovblyuk, M. M., & Kvetkov, R. S. (2020). The first data on the nesting biology of the invasive blue nest-renting wasp, Chalybion turanicum (Gussakovskij, 1935) (Hymenoptera, Sphecidae, Sceliphrinae) in the Crimea. Acta Biologica Sibirica, 6, 571–582. https://doi.org/10.3897/abs.6.e57911

Fischer, A. (2019). Chemical communication in spiders – a methodological review. The Journal of Arachnology, 47(1), 1–27. https://doi.org/10.1636/0161-8202-47.1.1

Fisher, J. C., Yoh, N., Kubo, T., & Rundle, D. (2021). Could Nintendo’s Animal Crossing be a tool for conservation messaging? People and Nature, 3, 1218–1228. https://doi.org/10.1002/pan3.10240

Foelix, R. F. (2011). Biology of spiders (third edition). Oxford University Press.

Fruergaard, S., Lund, M. B., Schramm, A., Vosegaard, T., & Bilde, T. (2021). The myth of antibiotic spider silk. iScience, 24(10), 103125 (17 pp.). https://doi.org/10.1016/j.isci.2021.103125

Fusto, G., Bennardo, L., Duca, E. D., Mazzuca, D., Tamburi, F., & Patruno, C. (2020). Spider bites of medical significance in the Mediterranean area: misdiagnosis, clinical features and management. Journal of Venomous Animals and Toxins including Tropical Diseases, 26, e20190100 (11 pp.). https://doi.org/10.1590/1678-9199-JVATITD-2019-0100

Gerbaulet, M., Möllerke, A., Weiss, K., Chinta, S., Schneider, J. M., & Schulz, S. (2021). Identification of cuticular and web lipids of the spider Argiope bruennichi. Research Square, 30 pp. https://doi.org/10.1007/s10886-021-01338-y

Gopalakrishnakone, P., Corzo, G. A., Diego-Garcia, E., & Lima, M. E. (Eds.) (2016). Spider Venoms. Springer Dordrecht. https://doi.org/10.1007/978-94-007-6646-4

Grbac, I., Katušić, L. & Lukić, M. (2019). Catalogue of spiders (Araneae) deposited in the Croatian natural history museum. Natura Croatica, 28(1), 185–269. https://doi.org/10.20302/NC.2019.28.19

Grozea, I., Costea, Costea, M. A., Horgoş, H., Cărăbeţ, A., Vîrteiu, A. M., Molnar, L., Damianov, S., Grozea, A., & Ştef, R. (2021). Interspecific connections between invertebrates present in maize grown in monoculture. Research Journal of Agricultural Science, 53(1), 61–68. https://rjas.ro/issue_detail/56

Hamřík, T., & Košulič, O. (2019). Spiders from steppe habitats of Pláně nature monument (Czech Republic) with suggestions for the local conservation management. Arachnologische Mitteilungen, 58(1), 85–96. https://doi.org/10.30963/aramit5812

Heiby, J. C., Goretzki, B., Johnson, C. M., Hellmich, U. A., & Neuweiler, H. (2019). Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nature Communications, 10, 4378 (14 pp.). https://doi.org/10.1038/s41467-019-12365-5

Helebrandová, J. B., Pyszko, P., & Dolný, A. (2019). Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata). Insects, 10(5), 124 (12 pp.). https://doi.org/10.3390/insects10050124

Hwang, I.-W., Shin, M. K., Lee, Y.-J., Kim, S. T., Kee, S. Y., Lee, B. Jang, W., Yeo, J.-H., Lee, S., & Sung., J.-S. (2021). N-type Cav channel inhibition by spider venom peptide of Argiope bruennichi. Molecular & Cellular Toxicology, 17(1), 59–67. https://doi.org/10.1007/s13273-020-00109-2

Jiménez-Valverde, A., Peña-Aguilera, P., Barve, V., & Burguillo-Madrid, L. (2019). Photo-sharing platforms key for characterising niche and distribution in poorly studied taxa. Insect Conserv Divers, 12(5), 389–403. https://doi.org/10.1111/icad.12351

Kim, H., Sun, Y., Kim, T.-Y., & Moon, M.-J. (2020). Biodiversity monitoring for selection of insect and spider bioindicators at local organic agricultural habitats in South Korea. Entomological Research, 50(10), 493–505. https://doi.org/10.1111/1748-5967.12469

Kim, J. A., Jeon, H. S., Kang, T. H., Yoo, J. S., & Jun, J. (2020). Complete mitogenomes of two orb-weaver spiders, Argiope bruennichi and Araneus ventricosus. Mitochondrial DNA Part B, 5(2), 1506–1507. https://doi.org/10.1080/23802359.2020.1741463

Krehenwinkel, H., Meese, S., Mayer, C., Ruch, J., Schneider, J., Bilde, T., Künzel, S., Henderson, J. B., Russack, J., Simison, W. B., Gillespie, R., & Uhl, G. (2019). Cost effective microsatellite isolation and genotyping by high throughput sequencing. The Journal of Arachnology, 47(2), 190–201. https://doi.org/10.1636/JoA-S-16-017

Kuralt , Ž., & Kostanjšek, R. (2019). A contribution to the Slovenian spider fauna – IV. Natura Sloveniae, 21(1), 21–45. https://doi.org/10.14720/ns.21.1.21-45

Kůrka, A., Naumova, M., Indzhov, S., & Deltshev, C. (2020). New faunistic and taxonomic data on the spider fauna of Albania (Arachnida: Araneae). Arachnologische Mitteilungen, 59(1), 8–21. https://doi.org/10.30963/aramit5903

Lavery, A. (2019). A revised checklist of the spiders of Great Britain and Ireland. Arachnology, 18(3), 196–212. https://doi.org/10.13156/arac.2019.18.3.196

Lüddecke, T., Förster, F., Billion, A., Marcus, B., von Reumont, M., Vilcinskas, A., & Lemke, S. (2020). The venom gland transcriptome of the wasp spider Argiope bruennichi. Toxicon, 177(S1), S42–43. https://doi.org/10.1016/j.toxicon.2019.12.078

Lüddecke, T., von Reumont, B. M., Förster, F., Billion, A., Timm, T., Lochnit, G., Vilcinskas, A., & Lemke, S. (2020a). An economic dilemma between weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi). bioRxiv, 31 pp. https://doi.org/10.1101/2020.06.04.133660

Lüddecke, T., von Reumont, B. M., Förster, F., Billion, A., Timm, T., Lochnit, G., Vilcinskas, A., & Lemke, S. (2020b). An Economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi). Biomolecules, 10(7), 978 (21 pp.). https://doi.org/10.3390/biom10070978

Ma, X., Che, X., Wang, J., & Sang, H. (2019). The structure of spider communities in crab paddies and conventional paddies. Chinese Journal of Eco-Agriculture, 27(8), 1157–1162. https://doi.org/10.13930/j.cnki.cjea.181068

Maumary, L., Epars, O., Fivat, J.-M., Luisier, C., & Revaz, E. (2021). New breeding records of the Zitting Cisticola Cisticola juncidis at the Chablais (Valais & Vaud, Switzerland). Nos Oiseaux, 68(1), 45–62. https://www.nosoiseaux.ch/index.php?m_id=1309&id_booklet=489

Mihajlo, S., & Milenko, Ć. (2020). New species in the arachnofauna of Bosnia and Herzegovina from the protected habitat of Gromiţelj, Velino Selo. Archives for Technical Sciences, 22(1), 67–78. https://doi.org/10.7251/afts.2020.1222.067S

Müller, C. H. G., Ganske, A.-S., & Uhl, G. (2020). Ultrastructure of chemosensory tarsal tip-pore sensilla of Argiope spp. Audouin, 1826 (Chelicerata: Araneae: Araneidae). Journal of Morphology, 281(12), 1634–1659. https://doi.org/10.1002/jmor.21276

Nagayama, S., & Takasuka, K. (2021). New reports of confirmed pandiculation by spiders. Acta Arachnologica, 70(2), 131–132. https://doi.org/10.2476/asjaa.70.131

Naumova, M. (2020). Descriptions of two new spider species, with new data on the Albanian Arachnofauna (Arachnida: Araneae, Opiliones, Pseudoscorpiones and Scorpiones). Acta Zoologica Bulgarica, 72(1), 3–12. https://acta-zoologica-bulgarica.eu/march-2020/

Naumova, M., Lazarov, S., & Deltshev, C. (2019). Faunistic diversity of the spiders in Montenegro (Arachnida: Araneae). Ecologica Montenegrina, 22, 50–89. https://doi.org/10.37828/em.2019.22.5

Nentwig, W., Ansorg, J., Bolzern, A., Frick, H., Ganske, A.-S., Hänggi, A., Kropf, C., & Stäubli, A. (2022). All You Need to Know About Spiders. Springer Chem. https://doi.org/10.1007/978-3-030-90881-2

Noguchi, D. (2020a). Predation of a large orb-web spider by a crab spider, Thomisus labefactus (Araenae: Thomisidae). Serket, 17(2), 139–142. https://doi.org/10.13140/RG.2.2.22077.88804

Noguchi, D. (2020b). UV-vis reflection spectrum of long-jawed orb weaver Leucauge blanda (Araneae: Tetragnathidae) and ecology of spiders from autumn to winter in Nagasaki. JSSE Research Report, 34(7), 33–38. https://doi.org/10.14935/jsser.34.7_33

Noguchi, D. (2021a). A note on spiders from Nagasaki Prefecture in 2020. Kumo-no-ito, (54), 41–51. https://doi.org/10.13140/RG.2.2.32904.43524

Noguchi, D. (2021b). Consumption of a hornet by a wasp spider, Argiope bruennichi (Araneae: Araneidae). Serket, 18(1), 67–69. https://doi.org/10.13140/RG.2.2.32144.21766

Noguchi, D. (2021c). Sex pheromones, kairomones, chemical mimicry and antimicrobial peptides of spiders (Arachnida: Araneae). Kumo-no-ito, (54), 10–40. https://doi.org/10.13140/RG.2.2.19482.66244

Noguchi, D. (2022). Long-lived Argiope amoena and A. bruennichi until December. Kumo-no-ito, (55), 15–16. https://doi.org/10.13140/RG.2.2.35001.58725

Noguchi, D., & Ikeda, K. (2022). Intraguild predation on hornets and yellowjackets of vespine wasps by spiders, and vice versa. Serket, 18(3), 287–298. https://doi.org/10.13140/RG.2.2.35499.66086

Nyffeler, M., & Altig, R. (2020). Spiders as frog-eaters: a global perspective. The Journal of Arachnology, 48(1), 26–42. https://doi.org/10.1636/0161-8202-48.1.26

Öcal, İ. Ç., Kayhan, N. Y., & Aktaş, Ü. H. (2021). [Argiope bruennichi (Scopoli, 1772) Spider's Web Structure and Morphology of the Spinneret]. Turkish Journal of Agriculture - Food Science and Technology, 9(3), 577–583. https://doi.org/10.24925/turjaf.v9i3.577-583.4073

Ono, H., & Ogata, K. (Eds.) (2018). Spiders of Japan. Tokai University Press. [In Japanese.]

Pantini, P., & Isaia, M. (2019) Araneae.it: the online catalog of Italian spiders, with addenda on other Arachnid Orders occurring in Italy (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpionida, Scorpiones, Solifugae). Fragmenta entomologica, 51(2), 127–152. https://doi.org/10.13133/2284-4880/374.

Palacino-Rodríguez, F., Lozano, M. A., Altamiranda-Saavedra, M., Beltrán, N. J., Penagos, A. C., Hueso-Olaya, D., Morales, I. T., Rios, K. J., Camacho-Contreras, P., Palacino-Penagos, D. A., Penagos-Arevalo, A., & Arbeláez-Cortés, E. (2022). Knowledge on Colombian insects and arachnids: a bibliometric approach. Studies on Neotropical Fauna and Environment, 59(1), 31–43. https://doi.org/10.1080/01650521.2022.2035119

Peña-Aguilera, P., Burguillo-Madrid, L., Barve, V., Aragón, P., & Jiménez-Valverde, A. (2019). Niche segregation in Iberian Argiope species. The Journal of Arachnology, 47(1), 37–44. https://doi.org/10.1636/0161-8202-47.1.37

Pérez-Rigueiro, J., Ruiz, V., Cenis, J. L., Elices, M., & Guinea, G. V. (2020). Lessons from spider and silkworm silk guts. Frontiers in Materials, 7, 46 (8 pp.). https://doi.org/10.3389/fmats.2020.00046

Picchi, M. S. (2020). Spiders (Araneae) of olive groves and adjacent semi- natural habitats from central Italy. Arachnologische Mitteilungen, 60(1), 1–11. https://doi.org/10.30963/aramit6001

Picchi, M. S., Bocci, G., Petacchi, R., & Entling, M. H. (2020). Taxonomic and functional differentiation of spiders in habitats in a traditional olive producing landscape in Italy. European Journal of Entomology, 117, 18–26. https://doi.org/10.14411/eje.2020.002

Pilgrim, J., Thongprem, P., Davison, H. R., Siozios, S., Baylis, M., Zakharov, E. V., Ratnasingham, S., deWaard, J. R., Macadam, C. R., Smith, M. A., & Hurst, G. D. D. (2021). Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. GigaScience, 10(3), giab021 (19 pp.). https://doi.org/10.1093/gigascience/giab021

Ponomarev, A. V., Aliev, M. A., Khabiev, G. N., & Shmatko, V. Yu. (2019). New data on the spider fauna (Aranei) of Dagestan, Russia. Arthropoda Selecta, 28(2), 309–334. https://doi.org/10.15298/arthsel.28.2.14

Riekel, C., Burghammer, M., & Rosenthal, M. (2019a) Nanoscale X-ray diffraction of silk fibers. Frontiers in Materials, 6, 315 (10 pp.). https://doi.org/10.3389/fmats.2019.00315

Riekel, C., Burghammer, M., & Rosenthal, M. (2019b). Skin-core morphology in spider flagelliform silk. Applied Physics Letters, 115(12), 123702 (4 pp.). https://doi.org/10.1063/1.5110268

Riekel, C., Burghammer, M., & Rosenthal, M. (2020). Mesoscale structures in amorphous silks from a spider’s orb-web. Scientific Reports, 10, 18205 (12 pp.). https://doi.org/10.1038/s41598-020-74638-0

Saric, M., & Scheibel, T. (2019). Engineering of silk proteins for materials applications. Current Opinion in Biotechnology, 60, 213–220. https://doi.org/10.1016/j.copbio.2019.05.005

Schmidtberg, H., von Reumont., B. M., Lemke, S., Vilcinskas, A., & Lüddecke, T. (2021). Morphological analysis reveals a compartmentalized duct in the venom apparatus of the wasp spider (Argiope bruennichi). Toxins, 13(4), 270 (16 pp.). https://doi.org/10.3390/toxins13040270

Sheffer, M. M., Cordellier, M., Forman, M., Grewoldt, M., Hoffmann, K., Jensen, C., Kotz, M., Král, J., Kuss, A. W., Líznarová, E., & Uhl, G. (2021). Identification of sex chromosomes using genomic and cytogenetic methods in a range-expanding spider, Argiope bruennichi (Araneae: Araneidae). bioRxiv, 26 pp. https://doi.org/10.1101/2021.10.06.463373

Sheffer, M. M., Hoppe, A., Krehenwinkel, H., Uhl, G., Kuss, A. W., Jensen,L., Jensen, C., Gillespie, R. G., Hoff, K. J., & Prost, S. (2021). Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation. GigaScience, 10(1), giga148 (12 pp.). https://doi.org/10.1093/gigascience/giaa148

Sheffer, M. M., Uhl, G., Prost, S., Lueders, T., Urich, T., & Bengtsson, M. M. (2020). Tissue- and population-level microbiome analysis of the wasp spider Argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms, 8(1), 8 (15 pp.). https://doi.org/10.3390/microorganisms8010008

Sozontov, A. (2021). Spiders of the Udmurt republic, Russia. Biodiversity Data Journal, 9, e70534 (27 pp.). https://doi.org/10.3897/BDJ.9.e70534

Sugiura, S., Sakagami, K., Harada, M., & Shimada, N. (2019). Can praying mantises escape from spider webs? Ecology, 100(11), e02799 (3 pp.). https://doi.org/10.1002/ecy.2799

Sugiura, S., Sakagami, K., Harada, M., & Shimada, N. (2020). Praying mantises versus orb-weaving spiders. Bulletin of the Ecological Society of America, 101(1), 1–5. https://doi.org/10.1002/bes2.1622

Suzuki, Y., & Mukaimine, W. (2021). Prey–predator interactions and body size relationships between annual cicadas and spiders in Japan. Journal of Natural History, 55(43-44), 2749–2760. https://doi.org/10.1080/00222933.2021.2019340

Šnajdarová, M., & Šnajdara, P. (2019). The first records of the Styrian praying lacewing (Mantispa styriaca) in the Zlín region. Acta Carpathica Occidentalis, 10(1), 64–67. https://doi.org/10.62317/aco.2019.008

Trilikauskas, L. A. (2019).To the fauna of spiders (Arachnida: Aranei) of the “Leopard Land” national park and the “Kedrovaya Pad” state nature reserve, Primorskii Krai. Far Eastern Entomologist, (392), 6–20. https://doi.org/10.25221/fee.392.2

Trotta, A. (2020). Spiders from Molise (Italy): state of knowledge, new faunistic data and taxonomic notes (Arachnida: Araneae). Fragmenta Entomologica, 52(1), 77–83. https://doi.org/10.13133/2284-4880/415

Vallejo, N., Aihartza, J., Goiti, U., Arrizabalaga-Escudero, A., Flaquer, C., Puig, X., Aldasoro, M., Baroja, U., & Garin, I. (2019). The diet of the notch-eared bat (Myotis emarginatus) across the Iberian Peninsula analysed by amplicon metabarcoding. Hystrix, 30(1), 59–64. https://doi.org/10.4404/HYSTRIX-00189-2019

Viera, C., & Gonzaga, M. O. (Eds.) (2017). Behaviour and Ecology of Spiders. Springer Cham. https://doi.org/10.1007/978-3-319-65717-2

Virant-Doberlet, M., Kuhelj, A., Polajnar, J., & Šturm, R. (2019). Predator-prey interactions and eavesdropping in vibrational communication networks. Frontiers in Ecology and Evolution, 7, 203 (15 pp.). https://doi.org/10.3389/fevo.2019.00203

von Cossel, M., Steberl, K., Hartung, J., Pereira, L. A., Kiesel, A., & Lewandowski, I. (2019). Methane yield and species diversity dynamics of perennial wild plant mixtures established alone, under cover crop maize (Zea mays L.), and after spring barley (Hordeum vulgare L.). Global Change Biology Bioenergy, 11(11), 1376–1391. https://doi.org/10.1111/gcbb.12640

Walter, A. (2019). Silk decorations in Argiope spiders: consolidation of pattern variation and specific signal function. The Journal of Arachnology, 47(2), 271–275. https://doi.org/10.1636/JoA-S-18-013

Wang, J., Yuan, W., Qin, R., Fan, T., Fan, J., Huang, W., Yang, D., & Lin, Z. (2021). Self-assembly of tubuliform spidroins driven by hydrophobic interactions among terminal domains. International Journal of Biological Macromolecules, 166(1), 1141–1148. https://doi.org/10.1016/j.ijbiomac.2020.10.269

Wawer, W., & Wytwer, J. (2020). Abundance changes in orb-weaver spider communities at the edge of the Argiope bruennichi expansion range. Zootaxa, 4899(1), 363–373. https://doi.org/10.11646/zootaxa.4899.1.18

Weiss, K., Ruch, J., Zimmer, S. S., & Schneider, J. M. (2020). Does sexual cannibalism secure genetic benefits of polyandry in a size-dimorphic spider? Behavioral Ecology and Sociobiology, 74(8), 110 (9 pp.). https://doi.org/10.1007/s00265-020-02890-5

Weiss, K., & Schneider, J. M. (2021). Family-specific chemical profiles provide potential kin recognition cues in the sexually cannibalistic spider Argiope bruennichi. Biology Letters, 17(8), 20210260 (7 pp.). https://doi.org/10.1098/rsbl.2021.0260

Wilcox, C. (2019). Amateur naturalists can help spot rare species. Frontiers in Ecology and the Environment, 17(5), 252. https://doi.org/10.1002/fee.2051

Wolz, M., Klockmann, M., Schmitz, T., Pekár, S., Bonte, D., & Uhl, G. (2020). Dispersal and life-history traits in a spider with rapid range expansion. Movement Ecology, 8, 2 (11 pp.). https://doi.org/10.1186/s40462-019-0182-4

Zhan, Y., Jiang, H., Wu, Q., Zhang, H., Bai, Z., Kuntner, M., & Tu, L. (2019) Comparative morphology refines the conventional model of spider reproduction. PLoS ONE, 14(7), e0218486 (16 pp.). https://doi.org/10.1371/journal.pone.0218486

Downloads

Posted


Submitted: 2025-02-21 00:42:56 UTC

Published: 2025-02-26 00:51:32 UTC
Section
Interdisciplinary Sciences