This preprint has been published.
DOI: https://doi.org/10.1039/D3RA01390A
Preprint / Version 1

Development of green fluorescent protein-based cAMP indicators with expanded dynamic range and various working ranges

##article.authors##

  • Sohei Hiasa School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology
  • Takeru Fujimori School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology
  • Saki Aiki Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
  • Hiroshi Ueda Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
  • Takashi Tsuboi Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
  • Tetsuya Kitaguchi Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology

DOI:

https://doi.org/10.51094/jxiv.108

Keywords:

biosensor, fluorescent protein, protein engineering, cyclic AMP, live-cell imaging, molecular evolution

Abstract

There is a wide range in the concentration of intracellular cyclic adenosine 3’, 5’-monophosphate (cAMP), which mediates specific effects as a second messenger in pathways affecting many physiological processes. Here, we developed green fluorescent cAMP indicators, named Green Falcan (Green fluorescent protein-based indicator visualizing cAMP dynamics) with various EC50 (0.3, 1, 3, 10 µM) for covering the wide range of intracellular cAMP concentrations. The fluorescence intensity of Green Falcans increased in a cAMP dose-dependent manner, with the dynamic range of over 3-fold. Green Falcans showed a high specificity for cAMP over its structural analogues. When we expressed Green Falcans to HeLa cells, these indicators visualized dynamics and distinct kinetics of cAMP in various pathways in living cells with high spatiotemporal resolution. Furthermore, we demonstrated that Green Falcans are applicable to dual-color imaging with R-GECO, a red fluorescent Ca2+ indicator, in the cytoplasm and the nucleus. This study shows that Green Falcans open up new avenue for understanding hierarchal and cooperative interaction with other molecules in various cAMP signaling pathways by multi-color imaging.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Willoughby D, Cooper DM. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev. 2007;87(3):965-1010. doi:10.1152/physrev.00049.2006

Shabb JB. Physiological substrates of cAMP-dependent protein kinase. Chem Rev. 2001;101(8):2381-2411. doi:10.1021/cr000236l

Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol. 2010;159(2):265-284. doi:10.1111/j.1476-5381.2009.00458.x

Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82(3):769-824. doi:10.1152/physrev.00008.2002

Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology. 2011;152(2):405-413. doi:10.1210/en.2010-0956

Nakajima A, Ishihara S, Imoto D, Sawai S. Rectified directional sensing in long-range cell migration. Nat Commun. 2014;5:5367. Published 2014 Nov 6. doi:10.1038/ncomms6367

Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012;5:14. Published 2012 May 14. doi:10.1186/1756-6606-5-14

Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A. 2001;98(6):3197-3202. doi:10.1073/pnas.051636098

Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19(2):137-141. doi:10.1038/84397

Zhao Y, Araki S, Wu J, et al. An expanded palette of genetically encoded Ca²⁺ indicators. Science. 2011;333(6051):1888-1891. doi:10.1126/science.1208592

Kitaguchi T, Oya M, Wada Y, Tsuboi T, Miyawaki A. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem J. 2013;450(2):365-373. doi:10.1042/BJ20121022

Odaka H, Arai S, Inoue T, Kitaguchi T. Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging. PLoS One. 2014;9(6):e100252. Published 2014 Jun 24. doi:10.1371/journal.pone.0100252

Harada K, Ito M, Wang X, et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci Rep. 2017;7(1):7351. Published 2017 Aug 4. doi:10.1038/s41598-017-07820-6

Matsuda S, Harada K, Ito M, et al. Generation of a cGMP Indicator with an expanded dynamic range by optimization of amino acid linkers between a fluorescent protein and PDE5α. ACS Sens. 2017;2(1):46-51. doi:10.1021/acssensors.6b00582

Tewson PH, Martinka S, Shaner NC, Hughes TE, Quinn AM. New DAG and cAMP sensors optimized for live-cell assays in automated laboratories. J Biomol Screen. 2016;21(3):298-305. doi:10.1177/1087057115618608

Hackley CR, Mazzoni EO, Blau J. cAMPr: A single-wavelength fluorescent sensor for cyclic AMP. Sci Signal. 2018;11(520):eaah3738. Published 2018 Mar 6. doi:10.1126/scisignal.aah3738

Mita M, Wongso D, Ueda H, Tsuboi T, Kitaguchi T. Development of a single fluorescent protein-based green glucose indicator by semirational molecular design and molecular evolution. Methods Mol Biol. 2021;2274:89-100. doi:10.1007/978-1-0716-1258-3_9

Arai S, Kriszt R, Harada K, et al. RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew Chem Int Ed Engl. 2018;57(34):10873-10878. doi:10.1002/anie.201804304

Mita M, Ito M, Harada K, et al. Green fluorescent protein-based glucose indicators report glucose dynamics in living cells. Anal Chem. 2019;91(7):4821-4830. doi:10.1021/acs.analchem.9b00447

Clegg CH, Cadd GG, McKnight GS. Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1988;85(11):3703-3707. doi:10.1073/pnas.85.11.3703

Börner S, Schwede F, Schlipp A, et al. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc. 2011;6(4):427-438. doi:10.1038/nprot.2010.198

Steinberg RA, Symcox MM, Sollid S, Ogreid D. Arginine 210 is not a critical residue for the allosteric interactions mediated by binding of cyclic AMP to site A of regulatory (RIalpha) subunit of cyclic AMP-dependent protein kinase. J Biol Chem. 1996;271(44):27630-27636. doi:10.1074/jbc.271.44.27630

Harada K, Chihara T, Hayasaka Y, et al. Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging. Sci Rep. 2020;10(1):19562. Published 2020 Nov 11. doi:10.1038/s41598-020-76440-4

Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994;91(26):12501-12504. doi:10.1073/pnas.91.26.12501

Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc. 2008;130(4):1227-1235. doi:10.1021/ja0754507

Brejc K, Sixma TK, Kitts PA, et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A. 1997;94(6):2306-2311. doi:10.1073/pnas.94.6.2306

Goraya TA, Cooper DM. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cell Signal. 2005;17(7):789-797. doi:10.1016/j.cellsig.2004.12.017

Posted


Submitted: 2022-06-30 07:04:18 UTC

Published: 2022-07-04 04:31:17 UTC
Section
Biology, Life Sciences & Basic Medicine