Preprint / Version 1

Data for Brain Reference Architecture of AF24Hippocampus-Amygdala

Integrating BRA for Spatial Cognition and Fear Conditioning

##article.authors##

  • Akira Taniguchi College of Information Science and Engineering, Ritsumeikan University https://orcid.org/0000-0003-0678-1103 https://researchmap.jp/ataniguchi
  • Atsushi Fujii College of Information Science and Engineering, Ritsumeikan University
  • Takeshi Nakashima Graduate School of Information Science and Engineering, Ritsumeikan University
  • Tatsuya Miyamoto Graduate School of Advanced Science and Engineering, Waseda University
  • Yoshimasa Tawatsuji The Whole Brain Architecture Initiative / The University of Tokyo
  • Hiroshi Yamakawa The Whole Brain Architecture Initiative / The University of Tokyo

DOI:

https://doi.org/10.51094/jxiv.1058

Keywords:

Amygdala, Brain Reference Architecture, Fear Conditioning, Hippocampal Formation, Spatial Cognition

Abstract

The hippocampal formation plays a pivotal role in spatial cognition and episodic memory, while the amygdala is essential for adaptive fear conditioning. We have developed a brain reference architecture (BRA) data format by integrating "TM24Amygdala_ver4" (based on "YM24Amygdala") and "TN24HippocampalFormation" BRA data. This BRA data expands on previous BRA models by incorporating new brain information flow (BIF) that captures the connections between the hippocampus and amygdala. The constructed BIF provides a basis for defining higher-order functions related to spatial cognition and fear conditioning. These improvements deepen our understanding of the anatomical structure linking these regions and their interconnected functions. The BRA repository provides comprehensive access to these data, supporting further research into the functional and structural relationships between the hippocampal formation and the amygdala. This work not only advances our understanding of each region’s individual role but also provides insights into how their interaction shapes complex cognitive and emotional processes.

Conflicts of Interest Disclosure

The author(s) has/have no competing interests to declare.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Asede, D., Doddapaneni, D., & Bolton, M. M. (2022, December). Amygdala intercalated cells: Gatekeepers and conveyors of internal state to the circuits of emotion. The Journal of Neuroscience, 42 (49), 9098–9109. Retrieved from http://dx.doi.org/10.1523/JNEUROSCI.1176-22.2022 DOI: 10.1523/jneurosci.1176-22.2022

Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65 (1), 7–19. Retrieved from https://doi.org/10.1016/j.neuron.2009.11.031 (PMCID: PMC2822727, NIHMSID: NIHMS163144) DOI: 10.1016/j.neuron.2009.11.031

Kim, J., Pignatelli, M., Xu, S., Itohara, S., & Tonegawa, S. (2016). Antagonistic negative and positive neurons of the basolateral amygdala. Nature Neuroscience, 19, 1636–1646. Retrieved from https://www.nature.com/articles/nn.4414 DOI: 10.1038/nn.4414

Lee, J., Park, J., Jeong, M., Oh, S.-J., Yoon, J.-H., & Oh, Y.-S. (2024, July). Anatomical topology of extrahippocampal projections from dorsoventral CA pyramidal neurons in mice. Frontiers in Neuroanatomy, 18. Retrieved from http://dx.doi.org/10.3389/fnana.2024.1421034 DOI: 10.3389/fnana.2024.1421034

Lines, J., Nation, K., & Fellous, J.-M. (2014). A connectionist model of context-based memory reconsolidation in the hippocampus: the role of sleep. BMC Neuroscience, 15, P163. Retrieved from https://doi.org/10.1186/1471-2202-15-S1-P163 DOI: 10.1186/1471-2202-15-S1-P163

Maren, S. (2001). Neurobiology of pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931. Retrieved from https://www.annualreviews.org/content/journals/10.1146/annurev.neuro.24.1.897 DOI: 10.1146/annurev.neuro.24.1.897

Maruyama, Y., Miyamoto, T., Tawatsuji, Y., & Yamakawa, H. (2024). Data for Brain Reference Architecture of YM24Amygdala. In The first international whole brain architecture workshop.

Masurkar, A. V. (2018). Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer’s disease across anatomical axes. Journal of Alzheimer’s Disease and Parkinsonism, 08 (01). Retrieved from http://dx.doi.org/10.4172/2161-0460.1000412 DOI: 10.4172/2161-0460.1000412

Nakashima, T., Otake, S., Taniguchi, A., Maeyama, K., El Hafi, L., Taniguchi, T., & Yamakawa, H. (2024, July). Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective. Frontiers in Computational Neuroscience, 18, 1398851. Retrieved from https://nakashimatakeshi.github.io/HF-IGL/ DOI: 10.3389/FNCOM.2024.1398851

Nakashima, T., Taniguchi, A., Fukawa, A., & Yamakawa, H. (2024). Data for Brain Reference Architecture of TN24HippocampalFormation: Neural architecture for spatial cognition. In The first international whole brain architecture workshop.

Ohara, S., Rannap, M., Tsutsui, K.-I., Draguhn, A., Egorov, A. V., & Witter, M. P. (2023). Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents. Cell Reports, 42 (1), 112001. Retrieved from https://doi.org/10.1016/j.celrep.2023.112001 DOI: 10.1016/j.celrep.2023.112001

O’Keefe, J., & Nadel, L. (1979). Précis of O’Keefe & Nadel’s The hippocampus as a cognitive map. Behavioral and Brain Sciences, 2 (4), 487–494. DOI: 10.1017/S0140525X00063949

Park, E. H., O’Reilly Sparks, K. C., Grubbs, G., Taborga, D., Nicholas, K., Ahmed, A. S., ... Fenton, A. A. (2024). Cognitive control of behavior and hippocampal information processing without medial prefrontal cortex. eLife, 13, RP104475. Retrieved from https://doi.org/10.7554/eLife.RP104475 DOI: 10.7554/eLife.RP104475

Paw-Min-Thein-Oo, Sakimoto, Y., Kida, H., & Mitsushima, D. (2020, June). Proximodistal heterogeneity in learning-promoted pathway-specific plasticity at dorsal CA1 synapses. Neuroscience, 437, 184–195. Retrieved from http://dx.doi.org/10.1016/j.neuroscience.2020.04.040 DOI: 10.1016/j.neuroscience.2020.04.040

Pitkänen, A., Jolkkonen, E., & Kemppainen, S. (2000). Anatomic heterogeneity of the rat amygdaloid complex. Folia Morphologica, 59 (1), 1–23.

Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2010, October). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36 (2), 529–538. Retrieved from http://dx.doi.org/10.1038/npp.2010.184 DOI: 10.1038/npp.2010.184

Taniguchi, A., Fukawa, A., & Yamakawa, H. (2022). Hippocampal formation-inspired probabilistic generative model. Neural Networks, 151, 317-335. Retrieved from https://www.sciencedirect.com/science/article/pii/S0893608022001332 DOI: https://doi.org/10.1016/j.neunet.2022.04.001

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55 (4), 189.

Wang, J., Tambini, A., & Lapate, R. C. (2022). The tie that binds: temporal coding and adaptive emotion. Trends in Cognitive Sciences, 26 (12), 1103–1118. Retrieved from https://doi.org/10.1016/j.tics.2022.09.005 DOI: 10.1016/j.tics.2022.09.005

Yamakawa, H. (2021). The whole brain architecture approach: Accelerating the development of artificial general intelligence by referring to the brain. Neural Networks, 144, 478–495. DOI: 10.1016/j.neunet.2021.09.004

Yang, Y., & Wang, J.-Z. (2017, October). From structure to behavior in basolateral amygdala-hippocampus circuits. Frontiers in Neural Circuits, 11. Retrieved from http://dx.doi.org/10.3389/fncir.2017.00086 DOI: 10.3389/fncir.2017.00086

Downloads

Posted


Submitted: 2025-01-24 14:31:28 UTC

Published: 2025-01-28 04:31:09 UTC
Section
Information Sciences