Preprint / Version 1

Data for Brain Reference Architecture of NY24CanonicalCorticalMicrocircuitsDecisionMaking

Canonical cortical microcircuits reference architecture for decision making

##article.authors##

  • Naohiro Yamauchi Okinawa Institute of Science and Technology, Neural Computation Unit
  • Yoshimasa Tawatsuji The University of Tokyo, Graduate School of Engineering
  • Yudai Suzuki The University of Tokyo, Graduate School of Engineering
  • Kenji Doya Okinawa Institute of Science and Technology, Neural Computation Unit
  • Hiroshi Yamakawa The University of Tokyo, Graduate School of Engineering

DOI:

https://doi.org/10.51094/jxiv.1048

Keywords:

Brain Reference Architecture, Canonical Cortical Microcircuits, Reinforcement learning

Abstract

Canonical cortical microcircuits (CCMs) is the six-layer structure preserved throughout the mammalian neocortex and is thought as a fundamental computational unit. This dataset reverse-engineers CCMs and presents a computational model to achieve decision-making. The data consist of the anatomical connectivity of CCMs and the functions hierarchically achieved from each uniform circuit. First, information on the anatomical connections of CCMs was collected from seven review papers. Next, reinforcement learning was determined as the algorithm for decision-making, which CCMs can implement. Finally, we describe how top-level functions are achieved from excitatory neural populations and circuit motif based on inhibitory neural populations, assigning output semantics to each excitatory neural population. The data are described in a brain reference architecture format and stored in the BRA data repository. This dataset provides experimentally testable hypotheses about neural activity patterns in cortical layers.

Conflicts of Interest Disclosure

Yoshimasa Tawatsuji and Hiroshi Yamakawa are BRAES managers but did not participate in the editorial process or decisions related to this manuscript.

Downloads *Displays the aggregated results up to the previous day.

Download data is not yet available.

References

Audette, N. J., Urban-Ciecko, J., Matsushita, M., & Barth, A. L. (2017). Pom thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cerebral Cortex , 28 (4), 1312–1328. DOI: 10.1093/cercor/bhx044

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76 (4), 695–711.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., . . . Arkhipov, A. (2020). Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron, 106 (3), 388–403.e18. DOI: 10.1016/j.neuron.2020.01.040

Braganza, O., & Beck, H. (2018). The circuit motif as a conceptual tool for multilevel neuroscience. Trends in Neurosciences, 41 (3), 128–136. DOI: 10.1016/j.tins.2018.01.002

Constantinople, C. M., & Bruno, R. M. (2013). Deep cortical layers are activated directly by thalamus. Science, 340 (6140), 1591–1594. DOI: 10.1126/science.1236425

Doya, K. (2021). Canonical cortical circuits and the duality of bayesian inference and optimal control. Current Opinion in Behavioral Sciences, 41 , 160–167. DOI: 10.1016/j.cobeha.2021.07.003

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Moreira, J. V., Urdapilleta, E., . . . Lytton, W. W. (2023). Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics. Cell Reports, 42 (6), 112574. DOI: 10.1016/j.celrep.2023.112574

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex , 1 (1), 1-47. DOI: 10.1093/cercor/1.1.1-a

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1 (4), 381–414. DOI: 10.1162/netna00018

George, D., & Hawkins, J. (2009). Towards a mathematical theory of cortical micro-circuits. PLoS Computational Biology, 5 (10), e1000532. DOI: 10.1371/journal.pcbi.1000532

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., . . . Zeng, H. (2019). Hierarchical organization of cortical and thalamic connectivity. Nature, 575 (7781), 195–202. DOI: 10.1038/s41586-019-1716-z

Harris, K. D., & Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503 (7474), 51–58. DOI: 10.1038/nature12654

Kermani Nejad, K., Anastasiades, P., Hert¨ag, L., & Costa, R. P. (2024). Self-supervised predictive learning accounts for cortical layer-specificity. DOI: 10.1101/2024.04.24.590916

Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosciences, 36 (3), 141–151. DOI: 10.1016/j.tins.2012.11.006

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv. DOI: 10.48550/ARXIV.1805.00909

Maruoka, H., Kubota, K., Kurokawa, R., Tsuruno, S., & Hosoya, T. (2011). Periodic organization of a major subtype of pyramidal neurons in neocortical layer v. The Journal of Neuroscience, 31 (50), 18522–18542. DOI: 10.1523/jneurosci.3117-11.2011

Miyashita, Y. (2024). Cortical layer-dependent signaling in cognition: Three computational modes of the canonical circuit. Annual Review of Neuroscience, 47 (1), 211–234. DOI: 10.1146/annurev-neuro- 081623-091311

Mountcastle, V. (1997). The columnar organization of the neocortex. Brain, 120 (4), 701–722. DOI: 10.1093/brain/120.4.701

Rao, R. P. (2024). A sensory–motor theory of the neocortex. Nature Neuroscience, 27 (7), 1221–1235.

Shepherd, G. M. G., & Yamawaki, N. (2021). Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nature Reviews Neuroscience, 22 (7), 389–406. DOI: 10.1038/s41583- 021-00459-3

Shipp, S. (2007). Structure and function of the cerebral cortex. Current Biology, 17 (12), R443–R449.

Thomson, A. M. (2007). Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 1 (1), 19–42. DOI: 10.3389/neuro.01.1.1.002.2007

Todorov, E. (2008). General duality between optimal control and estimation. In 2008 47th ieee conference on decision and control (p. 4286-4292). DOI: 10.1109/CDC.2008.4739438

Tremblay, R., Lee, S., & Rudy, B. (2016). Gabaergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91 (2), 260–292. DOI: 10.1016/j.neuron.2016.06.033

Vitrac, C., & Benoit-Marand, M. (2017). Monoaminergic modulation of motor cortex function. Frontiers in Neural Circuits, 11 . DOI: 10.3389/fncir.2017.00072

Wang, X.-J., & Yang, G. R. (2018). A disinhibitory circuit motif and flexible information routing in the brain. Current Opinion in Neurobiology, 49 , 75–83. DOI: 10.1016/j.conb.2018.01.002

Weiler, N., Wood, L., Yu, J., Solla, S. A., & Shepherd, G. M. G. (2008). Top-down laminar organization of the excitatory network in motor cortex. Nature Neuroscience, 11 (3), 360–366. DOI: 10.1038/nn2049

Yamakawa, H. (2021). The whole brain architecture approach: Accelerating the development of artificial general intelligence by referring to the brain. Neural Networks, 144 , 478–495. DOI: 10.1016/j.neunet.2021.09.004

Downloads

Posted


Submitted: 2025-01-18 12:27:56 UTC

Published: 2025-01-24 01:06:30 UTC
Section
Information Sciences