プレプリント / バージョン1

Fabrication of a cell culture scaffold that mimics the composition and structure of bone marrow extracellular matrix


  • Yamaguchi, Ayana Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University
  • Hashimoto, Yoshihide Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
  • Negishi, Jun Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University




decellularized fetal bone marrow、 extracellular matrix、 cell culture scaffold


Cell culture models that mimic tissue environments are useful for cell and extracellular matrix (ECM) function analysis. Decellularized tissues with tissue-specific ECM are expected to be applied as cell culture scaffolds, however it is often difficult for seeded cells to permeate their structures. In this study, we evaluated the adhesion and proliferation of mouse fibroblasts seeded onto decellularized bone marrow scaffolds that we fabricated from adult and fetal porcine. Decellularized fetal bone marrow displays more cell attachment and faster cell proliferation than decellularized adult bone marrow. Our findings suggest that decellularized fetal bone marrow is useful as a cell culture scaffold with bone marrow ECM and structure.


The authors declare no conflicts of interest associated with this manuscript.

ダウンロード *前日までの集計結果を表示します



Piacibello, W., Sanavio, F., Severino, A., Dane, A., Gammaitoni, L., Fagioli, F., Perissinotto, E., Cavalloni, G., Kollet, O., Lapidot, T., and Aglietta, M. (1999). Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34+ cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood, The Journal of the American Society of Hematology, 93(11), 3736-3749.

Dexter, T. M., Allen, T. D., and Lajtha, L. G. (1977). Conditions controlling the proliferation of haemopoietic stem cells in vitro. Journal of cellular physiology, 91(3), 335-344.

Jing, D., Fonseca, A. V., Alakel, N., Fierro, F. A., Muller, K., Bornhauser, M., Ehninger, G., Corbeil, D., and Ordemann, R. (2010). Hematopoietic stem cells in co-culture with mesenchymal stromal cells-modeling the niche compartments in vitro. haematologica, 95(4), 542.

Tan, J., Liu, T., Hou, L., Meng, W., Wang, Y., Zhi, W., and Deng, L. (2010). Maintenance and expansion of hematopoietic stem/progenitor cells in biomimetic osteoblast niche. Cytotechnology, 62, 439-448.

Abu-Absi, S. F., Friend, J. R., Hansen, L. K., and Hu, W. S. (2002). Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Experimental cell research, 274(1), 56-67.

Kelm, J. M., Djonov, V., Ittner, L. M., Fluri, D., Born, W., Hoerstrup, S. P., and Fussenegger, M. (2006). Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue engineering, 12(8), 2151-2160.

Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586-1597.

Gilazieva, Z., Ponomarev, A., Rutland, C., Rizvanov, A., and Solovyeva, V. (2020). Promising applications of tumor spheroids and organoids for personalized medicine. Cancers, 12(10), 2727.

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., and Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141.

Liu, X., and Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of biomedical engineering, 32, 477-486.

Bourgine, P. E., Klein, T., Paczulla, A. M., Shimizu, T., Kunz, L., Kokkaliaris, K. D., Coutu, D. L., Lengerke, C., Skoda, R., Schroeder, T., and Martin, I. (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences, 115(25), E5688-E5695.

Dong, C., and Lv, Y. (2016). Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers, 8(2), 42.

Leisten, I., Kramann, R., Ferreira, M. S. V., Bovi, M., Neuss, S., Ziegler, P., Wagner, W., Knüchel, R., and Schneider, R. K. (2012). 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials, 33(6), 1736-1747.

Lee-Thedieck, C., Schertl, P., and Klein, G. (2022). The extracellular matrix of hematopoietic stem cell niches. Advanced Drug Delivery Reviews, 181, 114069.

Badylak, S. F., Freytes, D. O., and Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta biomaterialia, 5(1), 1-13.

Sicari, B. M., Johnson, S. A., Siu, B. F., Crapo, P. M., Daly, K. A., Jiang, H., Medberry, C. J., Tottey, S., Turner, N. J., and Badylak, S. F. (2012). The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials, 33(22), 5524-5533.

Zhang, X., Chen, X., Hong, H., Hu, R., Liu, J., and Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive materials, 10, 15-31.

Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., and Taylor, D. A. (2008). Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature medicine, 14(2), 213-221.

Morrison, S. J., and Scadden, D. T. (2014). The bone marrow niche for hematopoietic stem cells. Nature, 505(7483), 327-334.

Gao, X., Xu, C., Asada, N., and Frenette, P. S. (2018). The hematopoietic stem cell niche: from embryo to adult. Development, 145(2), dev139691.

Veldhuis‐Vlug, A. G., and Rosen, C. J. (2018). Clinical implications of bone marrow adiposity. Journal of internal medicine, 283(2), 121-139.

Anthony, B. A., and Link, D. C. (2014). Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in immunology, 35(1), 32-37.

Nakamura, N., Saito, K., Kimura, T., and Kishida, A. (2020). Recellularization of decellularized cancellous bone scaffolds using low-temperature cell seeding. Tissue and Cell, 66, 101385.

Acun, A., Oganesyan, R., Uygun, K., Yeh, H., Yarmush, M. L., and Uygun, B. E. (2021). Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials, 270, 120689.

Silva, A. C., Rodrigues, S. C., Caldeira, J., Nunes, A. M., Sampaio-Pinto, V., Resende, T. P., Oliveira, M. J., Barbosa, M. A., Thorsteinsdóttir, S., Nascimento, D. S., and Pinto-do-Ó, P. (2016). Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials, 104, 52-64

Sood, D., Chwalek, K., Stuntz, E., Pouli, D., Du, C., Tang-Schomer, M., Georgakoudi, I., Black, L. D. III, and Kaplan, D. L. (2016). Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS biomaterials science & engineering, 2(1), 131-140.

Hashimoto, Y., Funamoto, S., Kimura, T., Nam, K., Fujisato, T., and Kishida, A. (2011). The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials, 32(29), 7060-7067.

Crapo, P. M., Gilbert, T. W., and Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233-3243.

Mikkola, H. K., and Orkin, S. H. (2006). The journey of developing hematopoietic stem cells.

Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature reviews Molecular cell biology, 15(12), 786-801.

Daley, W. P., Peters, S. B., and Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of cell science, 121(3), 255-264.

Zhu, L., Xie, Y., Wen, B., Ye, M., Liu, Y., Imam, K. M. S. U., Cai, H., Zhang, C., Wang, F., and Xin, F. (2020). Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods, 64, 103697.

Sodek, K. L., Tupy, J. H., Sodek, J., and Grynpas, M. D. (2000). Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone, 26(2), 189-198.

Rahmati, M., Khan, A. H., Razavi, S., Khorramizadeh, M. R., Rasaee, M. J., and Sadroddiny, E. (2016). Cloning and expression of human bone morphogenetic protein-2 gene in Leishmania tarentolae. Biocatalysis and Agricultural Biotechnology, 5, 199-203.

Tamada, Y., and Ikada, Y. (1993). Cell adhesion to plasma-treated polymer surfaces. Polymer, 34(10), 2208-2212.

Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C., and Stratakis, E. (2010). Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta biomaterialia, 6(7), 2711-2720.

Bacakova, L., Filova, E., Parizek, M., Ruml, T., and Svorcik, V. (2011). Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnology advances, 29(6), 739-767.

Gupte, M. J., Swanson, W. B., Hu, J., Jin, X., Ma, H., Zhang, Z., Liu, Z., Feng, K., Feng, G., Xiao, G., Hatch, N., Mishina, Y., and Ma, P. X. (2018). Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta biomaterialia, 82, 1-11.

Karageorgiou, V., and Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474-5491.



投稿日時: 2023-12-23 22:57:59 UTC

公開日時: 2023-12-27 04:09:20 UTC