プレプリント / バージョン1

Subharmonic Template Matching in Hearing and Tonal Music

##article.authors##

  • Takahashi, Jun-ichi Freelance

DOI:

https://doi.org/10.51094/jxiv.479

キーワード:

Auditory Scene Analysis、 Sound Localization、 harmony、 pitch perception、 template matching

抄録

In our previous paper (Takahashi, 2023), we derived a harmonic template model for pitch perception from the Sound Integration (SI) for Sound Localization in Auditory Scene Analysis, where the template was produced by multiplying and dividing prime numbers and accumulating them in frequency. In this paper, we applied the model to harmony perception. Multiplication and division by a factor of 2 gave octave equivalence, and pitch classes folded within an octave gave scales. Major and minor scales in the Pythagorean scale were the tone groups made of the accumulation or folding of the perfect fifth from the root note, respectively. It was shown that the Shruti system of Indian music was consistent with a 7-limit just intonation. Consonance and chord were considered the SI of the sounds emanating from multiple objects and defined as the reintegration of multiple musical tones into the missing fundamental. The chord progression was considered the SI of the sounds at different times and was defined as the process of destabilization and stabilization due to the motion in the perceptual potential. The driving force that produced the hierarchical structure was considered to be the nonuniformity of learning intensity in frequency-responsive neurons in template learning.

利益相反に関する開示

The author and the present work have no support from anyone and no conflict of interest with any other works.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Anderson J. (2000). A provisional history of spectral music. Contemporary Music Review 19(2): 7-22. https://doi.org/10.1080/07494460000640231

Ball P. (2010). The Music Instinct: How Music Works and Why We Can't Do Without. Oxford Univ Press on Demand. ISBN-10 :‎ 0199754276

Békésy G. (1949). The vibration of the cochlear partition in anatomical preparations and in models of the inner ear. J. Acoust. Soc. Am. 21: 233-245. https://doi.org/10.1121/1.1906502

Bernstein J. G., Oxenham A. J. (2003). Pitch discrimination of diotic and dichotic tone complexes: Harmonic resolvability or harmonic number? J. Acoust. Soc. Am. 113 (6):3323-3334. https://doi.org/10.1121/1.1572146

Bian L, & Chen S, (2008). Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions, J Acoust Soc Am., 124(6):3739–3750. https://doi: 10.1121/1.3001706

Bregman A. S. (1994). Auditory scene analysis: The perceptual organization of sound. MIT press. ISBN-10 ‏ : ‎ 0262521954

Cutting C. B. (2018). Microtonal Analysis of "Blue Notes" and the Blues Scale. Empirical Musicology Review, 13(1-2): 84-99.

de Cheveigné A. (2010). Pitch perception (Chap.4); Oxford Handbook of Auditory Science: Hearing, Oxford University Press, USA. ISBN-10 ‏ : ‎ 0199233551

de Cheveigné A. (2004). Pitch perception models-a historical review. CNRS-Ircam, Paris, France.

Datta A. K., Sengupta R., Dey N. (2011). Objective analysis of srutis from the vocal performances of Hindustani music using clustering algorithm. EUNOMIOS Open Online J. Theory Anal. Semiot. Music, 25.

Fineberg J. (2000). Guide to the basic concepts and techniques of spectral music, Contemporary Music Review, 19(2): 81-113, https://doi.org/10.1080/07494460000640271

Gill K. Z., & Purves D. (2009). A biological rationale for musical scales. PLoS One 4(12):e8144. https://doi.org/10.1371/journal.pone.0008144

Goldstein J. L. (1973). An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54:1496-1516. https://doi.org/10.1121/1.1914448

Harrison P. M. C., & Pearce M. T. (2020). Simultaneous consonance in music perception and composition. Psychological Review, 127(2):216–244. https://doi.org/10.1037/rev0000169

Houtsma A. J. M., & Smurzynski J. (1989). Pitch of complex tones with many high‐order harmonics. J. Acoust. Soc. Am., 85: S142. https://doi.org/10.1121/1.2026776

Huron D. (2001). Is music an evolutionary adaptation?. Annals of the New York Academy of sciences, 930(1): 43-61. https://doi.org/10.1111/j.1749-6632.2001.tb05724.x

Imasaka T., Kawasaki S., & Ishibashi N. (1989). Generation of more than 40 laser emission lines from the ultraviolet to the visible regions by two-color stimulated Raman effect. Applied Physics B, 49(4):389-392. https://doi.org/10.1007/BF00324191

Johnston B. (2010). "Maximum Clarity" and Other Writings on Music. University of Illinois Press. ISBN-10 ‏ : ‎ 0252030982

Juslin P. N., Sloboda J. A. (2001). Music and Emotion: Theory and Research (Series in Affective Science). Oxford University Press. ISBN-10 ‏ : ‎ 0192631888

Kemp D. T. (1979). Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch. Otol. Rhino. Laryngol. 224:37–45. https://doi.org/10.1007/BF00455222

Kubik G. (2008). Bourdon, blue notes, and pentatonicism in the blues: An Africanist perspective (Chap.1); Ramblin’ on my mind: New perspectives on the blues. Urbana, IL: University of Illinois Press. ISBN-10 ‏ : ‎ 0252032039

Lewin D. (2010). Generalized musical intervals and transformations. Oxford University Press, USA. ISBN-10 ‏ : ‎ 0199759944

Licklider J. C. R. (1954). Periodicity pitch and place pitch. J. Acoust. Soc. Am., 26:945-945. https://doi.org/10.1121/1.1928005

Maltz R. (1992). Microtonal techniques in the music of Harry Partch and Ben Johnston. Music Research Forum, 7:14-37.

McDermott J., Hauser M. (2005). The origins of music: Innateness, uniqueness, and evolution. Music perception, 23(1):29-59. https://doi.org/10.1525/mp.2005.23.1.29

Oxenham J. A. (2013). Revisiting place and temporal theories of pitch. Acoust. Sci. & Tech. 34(6):388-396. https://doi.org/10.1250/ast.34.388

Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature neuroscience, 6(7), 688-691. https://doi.org/10.1038/nn1083

Riemann H. (1877). Musikalische syntaxis: Grundriss einer harmonischen satzbildungslehre. Breitkopf & Härtel.

Russell J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6): 1161–1178. https://doi.org/10.1037/h0077714

Schouten J. F. (1940). The Perception of Pitch. Phillips Tech. Rev, 5:286-294.

Schouten J. F., Ritsma R. J., Cardozo B. L. (1962). Pitch of the Residue. J. Acoust. Soc. Am. 34:1418-1424. https://doi.org/10.1121/1.1918360

Shamma S., Dutta K. (2019). Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics. J. Acoust. Soc. Am. 145(2): 615-629. https://doi.org/10.1121/1.5088504

Stephens J. (2017). The Microtones of Bharata’s Natyashastra. Analytical Approaches to World Music 6(1):1-47. ISSN 2158-5296

Subramanya L., Vasudevan A., Deepak A. S., Ramasangu H. (2022). Representation Framework for Carnatic Music Melodies Using 22 Shruthis. Vidyabharati International Interdisciplinary Research Journal 14(1):1-3 ISSN 2319-4979

Takahashi J. (2023). Power Series Template Matching Model for Pitch Perception. BIORXIV/2023/525831

Takahashi J., Mano K., Yagi, T. (2006). Raman lasing and cascaded coherent anti-Stokes Raman scattering of a two-phonon Raman band. Optics letters 31(10):1501-1503 https://doi.org/10.1364/OL.31.001501

Terhardt E. (1974). Pitch, consonance, and harmony. J, Acoust, Soc. Am. 55: 1061-1069. https://doi.org/10.1121/1.1914648

Terhardt, E. (1978). Psychoacoustic evaluation of musical sounds. Perception & Psychophysics, 23(6), 483-492. https://doi.org/10.3758/BF03199523

Tymoczko D. (2010). A geometry of music: Harmony and counterpoint in the extended common practice. Oxford University Press. ISBN-10 ‏ : ‎ 0195336674

Wightman F. L. (1973). The pattern-transformation model of pitch. J. Acoust. Soc. Am. 54: 407-416. https://doi.org/10.1121/1.1913592

ダウンロード

公開済


投稿日時: 2023-08-13 07:37:04 UTC

公開日時: 2023-08-31 01:21:06 UTC
研究分野
心理学・教育学