プレプリント / バージョン1

Collective Cell Dynamics and Luminal Fluid Flow in the Epididymis: A Mechanobiological Perspective

##article.authors##

  • Veronica Lee Xi Min Mechanobiology Institute, National University of Singapore
  • Barry T. Hinton Department of Cell Biology, University of Virginia School of Medicine
  • Hirashima, Tsuyoshi Mechanobiology Institute, National University of Singapore

DOI:

https://doi.org/10.51094/jxiv.407

キーワード:

Collective Cell Dynamics、 Epididymis、 Luminal Fluid Flow、 Mechanobiology、 Wolffian Duct

抄録

The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly-coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. While recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.

利益相反に関する開示

The authors declare no competing interests.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Robaire B, Hinton BT. The Epididymis. In: Knobil and Neill’s Physiology of Reproduction. Elsevier; 2015:691-771. doi:10.1016/B978-0-12-397175-3.00017-X

Robaire B, Hinton BT, eds. The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens. Springer US; 2002. doi:10.1007/978-1-4615-0679-9

Murashima A, Xu B, Hinton BT. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice. Asian J Androl. 2015;17(5):749-755. doi:10.4103/1008-682X.155540

Jain S, Chen F. Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J. 2019;12(3):382-399. doi:10.1093/ckj/sfy112

Stewart K, Bouchard M. Coordinated cell behaviours in early urogenital system morphogenesis. Semin Cell Dev Biol. 2014;36:13-20. doi:10.1016/j.semcdb.2014.09.001

Vize PD, Woolf AS, Bard JBL, eds. The Kidney: From Normal Development to Congenital Diseases. Academic Press; 2003.

Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development. 2015;142(13):2329-2337. doi:10.1242/dev.122408

Takahashi Y, Kudo R, Tadokoro R, Atsuta Y. Coordination between body growth and tissue growth: Wolffian duct elongation and somitogenesis proceed in harmony with axial growth. Int J Dev Biol. 2018;62(1-2-3):79-84. doi:10.1387/ijdb.170290yt

Attia L, Schneider J, Yelin R, Schultheiss TM. Collective cell migration of the nephric duct requires FGF signaling: Collective Cell Migration of the Nephric Duct. Dev Dyn. 2015;244(2):157-167. doi:10.1002/dvdy.24241

Vasilyev A, Liu Y, Mudumana S, et al. Collective Cell Migration Drives Morphogenesis of the Kidney Nephron. Stemple DL, ed. PLoS Biol. 2009;7(1):e1000009. doi:10.1371/journal.pbio.1000009

Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA. Mechanical Stretch and PI3K Signaling Link Cell Migration and Proliferation to Coordinate Epithelial Tubule Morphogenesis in the Zebrafish Pronephros. Pichaud F, ed. PLoS ONE. 2012;7(7):e39992. doi:10.1371/journal.pone.0039992

Chan CJ, Costanzo M, Ruiz-Herrero T, et al. Hydraulic control of mammalian embryo size and cell fate. Nature. 2019;571(7763):112-116. doi:10.1038/s41586-019-1309-x

Choudhury MI, Benson MA, Sun SX. Trans-epithelial fluid flow and mechanics of epithelial morphogenesis. Semin Cell Dev Biol. 2022;131:146-159. doi:10.1016/j.semcdb.2022.05.020

Chugh M, Munjal A, Megason SG. Hydrostatic pressure as a driver of cell and tissue morphogenesis. Semin Cell Dev Biol. 2022;131:134-145. doi:10.1016/j.semcdb.2022.04.021

Hirashima T. Pattern Formation of an Epithelial Tubule by Mechanical Instability during Epididymal Development. Cell Rep. 2014;9(3):866-873. doi:10.1016/j.celrep.2014.09.041

Joseph A, Yao H, Hinton BT. Development and morphogenesis of the Wolffian/epididymal duct, more twists and turns. Dev Biol. 2009;325(1):6-14. doi:10.1016/j.ydbio.2008.10.012

Hirashima T. Mathematical study on robust tissue pattern formation in growing epididymal tubule. J Theor Biol. 2016;407:71-80. doi:10.1016/j.jtbi.2016.07.005

Tomaszewski J, Joseph A, Archambeault D, Yao HHC. Essential roles of inhibin beta A in mouse epididymal coiling. Proc Natl Acad Sci. 2007;104(27):11322-11327. doi:10.1073/pnas.0703445104

Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol. 2010;341(1):34-55. doi:10.1016/j.ydbio.2009.09.024

Walck-Shannon E, Hardin J. Cell intercalation from top to bottom. Nat Rev Mol Cell Biol. 2014;15(1):34-48. doi:10.1038/nrm3723

Xu B, Washington AM, Domeniconi RF, et al. Protein tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct. Dev Biol. 2016;412(2):219-233. doi:10.1016/j.ydbio.2016.02.029

Hirashima T, Adachi T. Polarized cellular mechanoresponse system for maintaining radial size in developing epithelial tubes. Development. Published online January 1, 2019:dev.181206. doi:10.1242/dev.181206

Gómez-Gálvez P, Vicente-Munuera P, Anbari S, et al. A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia. Cell Syst. 2022;13(8):631-643.e8. doi:10.1016/j.cels.2022.06.003

Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. The complex three-dimensional organization of epithelial tissues. Development. 2021;148(1):dev195669. doi:10.1242/dev.195669

Gómez-Gálvez P, Vicente-Munuera P, Tagua A, et al. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat Commun. 2018;9(1):2960. doi:10.1038/s41467-018-05376-1

Nakata H, Iseki S. Three‐dimensional structure of efferent and epididymal ducts in mice. J Anat. 2019;235(2):271-280. doi:10.1111/joa.13006

Goodwin K, Nelson CM. Mechanics of Development. Dev Cell. 2021;56(2):240-250. doi:10.1016/j.devcel.2020.11.025

Honda H, Nagai T, Tanemura M. Two different mechanisms of planar cell intercalation leading to tissue elongation. Dev Dyn. 2008;237(7):1826-1836. doi:10.1002/dvdy.21609

Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol. 2020;100:199-211. doi:10.1016/j.semcdb.2019.11.002

Wallingford JB, Fraser SE, Harland RM. Convergent Extension. Dev Cell. 2002;2(6):695-706. doi:10.1016/S1534-5807(02)00197-1

Hinton BT, Galdamez MM, Sutherland A, et al. How Do You Get Six Meters of Epididymis Inside a Human Scrotum? J Androl. 2011;32(6):558-564. doi:10.2164/jandrol.111.013029

Hirashima T. Mechanical Feedback Control for Multicellular Tissue Size Maintenance: A Minireview. Front Cell Dev Biol. 2022;9:820391. doi:10.3389/fcell.2021.820391

Sorce B, Escobedo C, Toyoda Y, et al. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun. 2015;6:8872. doi:10.1038/ncomms9872

Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature. 2011;469(7329):226-230. doi:10.1038/nature09642

Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18(6):375-388. doi:10.1038/nrm.2017.11

Guillot C, Lecuit T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science. 2013;340(6137):1185-1189. doi:10.1126/science.1235249

Xu B, Santos SAA, Hinton BT. Protein tyrosine kinase 7 regulates extracellular matrix integrity and mesenchymal intracellular RAC1 and myosin II activities during Wolffian duct morphogenesis. Dev Biol. 2018;438(1):33-43. doi:10.1016/j.ydbio.2018.03.011

Berger H, Breuer M, Peradziryi H, Podleschny M, Jacob R, Borchers A. PTK7 localization and protein stability is affected by canonical Wnt ligands. J Cell Sci. Published online January 1, 2017:jcs.198580. doi:10.1242/jcs.198580

Grund A, Till K, Giehl K, Borchers A. Ptk7 Is Dynamically Localized at Neural Crest Cell–Cell Contact Sites and Functions in Contact Inhibition of Locomotion. Int J Mol Sci. 2021;22(17):9324. doi:10.3390/ijms22179324

Yun J, Hansen S, Morris O, et al. Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nat Commun. 2023;14(1):156. doi:10.1038/s41467-022-35487-9

Nie X, Arend LJ. Novel roles of Pkd2 in male reproductive system development. Differentiation. 2014;87(3):161-171. doi:10.1016/j.diff.2014.04.001

Nie X, Arend LJ. Pkd1 is required for male reproductive tract development. Mech Dev. 2013;130(11):567-576. doi:10.1016/j.mod.2013.07.006

Cordeiro DA, Costa GMJ, França LR. Testis structure, duration of spermatogenesis and daily sperm production in four wild cricetid rodent species (A. cursor, A. montensis, N. lasiurus, and O. nigripes). Yenugu S, ed. PLOS ONE. 2021;16(5):e0251256. doi:10.1371/journal.pone.0251256

Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207-214. doi:10.1016/j.scr.2018.04.009

O’Hara L, McInnes K, Simitsidellis I, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29(3):894-910. doi:10.1096/fj.14-255729

Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol. 2018;9. Accessed March 24, 2023. https://www.frontiersin.org/articles/10.3389/fendo.2018.00059

Turner TT. Resorption versus secretion in the rat epididymis. J Reprod Fertil. 1984;72(2):509-514. doi:10.1530/jrf.0.0720509

Rato L, Socorro S, Cavaco JEB, Oliveira PF. Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. J Membr Biol. 2010;236(2):215-224. doi:10.1007/s00232-010-9294-x

Tuck RR, Setchell BP, Waites GMH, Young JA. The composition of fluid collected by micropuncture and catheterization from the seminiferous tubules and rete testis of rats. Pfluegers Arch Eur J Physiol. 1970;318(3):225-243. doi:10.1007/BF00593663

Hinton BT, Palladino MA. Epididymal epithelium: Its contribution to the formation of a luminal fluid microenvironment. Microsc Res Tech. 1995;30(1):67-81. doi:10.1002/jemt.1070300106

Turner TT. Spermatozoa Are Exposed to a Complex Microenvironment as They Traverse the Epididymis. Ann N Y Acad Sci. 1991;637(1 The Male Germ):364-383. doi:10.1111/j.1749-6632.1991.tb27323.x

Pholpramool C, Triphrom N, Din-Udom A. Intraluminal pressures in the seminiferous tubules and in different regions of the epididymis in the rat. Reproduction. 1984;71(1):173-179. doi:10.1530/jrf.0.0710173

Elfgen V, Mietens A, Mewe M, Hau T, Middendorff R. Contractility of the epididymal duct - function, regulation and potential drug effects. Reproduction. Published online August 2018. doi:10.1530/REP-17-0754

Turner TT, Gleavy JL, Harris JM. Fluid movement in the lumen of the rat epididymis: effect of vasectomy and subsequent vasovasostomy. J Androl. 1990;11(5):422-428.

Jaakkola UM. Regional variations in transport of the luminal contents of the rat epididymis in vivo. Reproduction. 1983;68(2):465-470. doi:10.1530/jrf.0.0680465

Jaakkola UM, Talo A. Movements of the luminal contents in two different regions of the caput epididymidis of the rat in vitro. J Physiol. 1983;336(1):453-463. doi:10.1113/jphysiol.1983.sp014590

Mietens A, Tasch S, Stammler A, Konrad L, Feuerstacke C, Middendorff R. Time-Lapse Imaging as a Tool to Investigate Contractility of the Epididymal Duct – Effects of Cgmp Signaling. Csernoch L, ed. PLoS ONE. 2014;9(3):e92603. doi:10.1371/journal.pone.0092603

Mewe M, Bauer CK, Schwarz JR, Middendorff R. Mechanisms Regulating Spontaneous Contractions in the Bovine Epididymal Duct1. Biol Reprod. 2006;75(4):651-659. doi:10.1095/biolreprod.106.054577

Mewe M, Bauer CK, Müller D, Middendorff R. Regulation of Spontaneous Contractile Activity in the Bovine Epididymal Duct by Cyclic Guanosine 5′-Monophosphate-Dependent Pathways. Endocrinology. 2006;147(4):2051-2062. doi:10.1210/en.2005-1324

Mitsui R, Hashitani H, Lang RJ, van Helden DF. Mechanisms underlying spontaneous phasic contractions and sympathetic control of smooth muscle in the rat caudal epididymis. Pflüg Arch - Eur J Physiol. 2021;473(12):1925-1938. doi:10.1007/s00424-021-02609-z

Al-Shboul O. The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi J Gastroenterol. 2013;19(1):3. doi:10.4103/1319-3767.105909

Hiroshige T, Uemura KI, Hirashima S, et al. Morphological analysis of interstitial cells in murine epididymis using light microscopy and transmission electron microscopy. Acta Histochem. 2021;123(6):151761. doi:10.1016/j.acthis.2021.151761

Soler C, Yeung CH, Cooper TG. Development of sperm motility patterns in the murine epididymis. Int J Androl. 1994;17(5):271-278. doi:10.1111/j.1365-2605.1994.tb01253.x

Gompper G, Winkler RG, Speck T, et al. The 2020 motile active matter roadmap. J Phys Condens Matter. 2020;32(19):193001. doi:10.1088/1361-648X/ab6348

Schoeller SF, Holt WV, Keaveny EE. Collective dynamics of sperm cells. Philos Trans R Soc B Biol Sci. 2020;375(1807):20190384. doi:10.1098/rstb.2019.0384

Turner TT, Howards SS. Factors Involved in the Initiation of Sperm Motility. Biol Reprod. 1978;18(4):571-578. doi:10.1095/biolreprod18.4.571

Turner TT, Reich GW. Cauda Epididymidal Sperm Motility: A Comparison Among Five Species. Biol Reprod. 1985;32(1):120-128. doi:10.1095/biolreprod32.1.120

Jiang FX, Temple-Smith P, Wreford NG. Postnatal differentiation and development of the rat epididymis: A stereological study. Anat Rec. 1994;238(2):191-198. doi:10.1002/ar.1092380205

Stoltenberg M, Therkildsen P, Andreasen A, et al. Computer-assisted visualization of the rat epididymis: a methodological study based on paraffin sections autometallographically stained for zinc ions. Histochem J. 1998;30(4):237-244. doi:10.1023/A:1003255705503

Maneely RB. Epididymal structure and function: a historical and critical review. Acta Zool. 1959;40(1):1-21. doi:10.1111/j.1463-6395.1959.tb00389.x

Togawa Y, Kano K ichi, Goto K, Sato S. THREE-DIMENSIONAL STRUCTURE OF THE HUMAN EPIDIDYMIS. Jpn J Urol. 1981;72(5):597-600. doi:10.5980/jpnjurol1928.72.5_597

Hirashima T, Adachi T. Procedures for the Quantification of Whole-Tissue Immunofluorescence Images Obtained at Single-Cell Resolution during Murine Tubular Organ Development. Xu SZ, ed. PLOS ONE. 2015;10(8):e0135343. doi:10.1371/journal.pone.0135343

Susaki EA, Ueda HR. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol. 2016;23(1):137-157. doi:10.1016/j.chembiol.2015.11.009

Meistrich ML, Hughes TJ, Bruce WR. Alteration of epididymal sperm transport and maturation in mice by oestrogen and testosterone. Nature. 1975;258(5531):145-147. doi:10.1038/258145a0

Albrechtová J, Albrecht T, Ďureje L, Pallazola VA, Piálek J. Sperm Morphology in Two House Mouse Subspecies: Do Wild-Derived Strains and Wild Mice Tell the Same Story? Johnson N, ed. PLoS ONE. 2014;9(12):e115669. doi:10.1371/journal.pone.0115669

Dong F, Shinohara K, Botilde Y, et al. Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol. 2014;204(2):203-213. doi:10.1083/jcb.201304076

Macmillan EW, Harrison RG. The rate of passage of radiopaque medium along the ductus epididymidis of the rat. Proc Soc Study Fertil. 1955;7:35-40.

Prakash S, Prithiviraj E, Suresh S, et al. Morphological diversity of sperm: A mini review. Iran J Reprod Med. 2014;12(4):239-242.

Scheele CLGJ, Herrmann D, Yamashita E, et al. Multiphoton intravital microscopy of rodents. Nat Rev Methods Primer. 2022;2(1):89. doi:10.1038/s43586-022-00168-w

Pittet MJ, Weissleder R. Intravital Imaging. Cell. 2011;147(5):983-991. doi:10.1016/j.cell.2011.11.004

Kanazawa Y, Omotehara T, Nakata H, Hirashima T, Itoh M. Three-dimensional analysis and in vivo imaging for sperm release and transport in the murine seminiferous tubule. Reproduction. 2022;164(1):9-18. doi:10.1530/REP-21-0400

Hashimoto D, Hirashima T, Yamamura H, et al. Dynamic erectile responses of a novel penile organ model utilizing TPEM†. Biol Reprod. 2021;104(4):875-886. doi:10.1093/biolre/ioab011

De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol. 2022;23(7):465-480. doi:10.1038/s41580-022-00472-z

Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63-73. doi:10.1038/nrm2597

AbouAlaiwi WA, Takahashi M, Mell BR, et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res. 2009;104(7):860-869. doi:10.1161/CIRCRESAHA.108.192765

Ando J, Yamamoto K. Flow detection and calcium signalling in vascular endothelial cells. Cardiovasc Res. 2013;99(2):260-268. doi:10.1093/cvr/cvt084

Malone AMD, Anderson CT, Tummala P, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104(33):13325-13330. doi:10.1073/pnas.0700636104

Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci. 2010;1192:422-428. doi:10.1111/j.1749-6632.2009.05243.x

Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55-60. doi:10.1126/science.1193270

Gao X, Wu L, O’Neil RG. Temperature-modulated Diversity of TRPV4 Channel Gating: ACTIVATION BY PHYSICAL STRESSES AND PHORBOL ESTER DERIVATIVES THROUGH PROTEIN KINASE C-DEPENDENT AND -INDEPENDENT PATHWAYS *. J Biol Chem. 2003;278(29):27129-27137. doi:10.1074/jbc.M302517200

Parpaite T, Coste B. Piezo channels. Curr Biol. 2017;27(7):R250-R252. doi:10.1016/j.cub.2017.01.048

Ranade SS, Qiu Z, Woo SH, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014;111(28):10347-10352. doi:10.1073/pnas.1409233111

Gao DD, Huang JH, Ding N, et al. Mechanosensitive Piezo1 channel in rat epididymal epithelial cells promotes transepithelial K+ secretion. Cell Calcium. 2022;104:102571. doi:10.1016/j.ceca.2022.102571

Taniguchi J, Tsuruoka S, Mizuno A, Sato J ichi, Fujimura A, Suzuki M. TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol-Ren Physiol. 2007;292(2):F667-F673. doi:10.1152/ajprenal.00458.2005

Gao DD, Xu JW, Qin WB, et al. Cellular Mechanism Underlying Hydrogen Sulfide Mediated Epithelial K+ Secretion in Rat Epididymis. Front Physiol. 2019;9. Accessed February 10, 2023. https://www.frontiersin.org/articles/10.3389/fphys.2018.01886

Gao DD, Huang JH, Zhang YL, et al. Activation of TRPV4 stimulates transepithelial K+ secretion in rat epididymal epithelium. Mol Hum Reprod. 2022;28(2):gaac001. doi:10.1093/molehr/gaac001

Praetorius HA. The primary cilium as sensor of fluid flow: new building blocks to the model. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol. 2015;308(3):C198-208. doi:10.1152/ajpcell.00336.2014

Praetorius HA, Spring KR. Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium. J Membr Biol. 2001;184(1):71-79. doi:10.1007/s00232-001-0075-4

Djenoune L, Mahamdeh M, Truong TV, et al. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science. 2023;379(6627):71-78. doi:10.1126/science.abq7317

Katoh TA, Omori T, Mizuno K, et al. Immotile cilia mechanically sense the direction of fluid flow for left-right determination. Science. 2023;379(6627):66-71. doi:10.1126/science.abq8148

Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129-137. doi:10.1038/ng1076

Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature. 2000;408(6815):990-994. doi:10.1038/35050128

Tsiokas L, Kim S, Ong EC. Cell biology of polycystin-2. Cell Signal. 2007;19(3):444-453. doi:10.1016/j.cellsig.2006.09.005

Köttgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008;182(3):437-447. doi:10.1083/jcb.200805124

Bernet A, Bastien A, Soulet D, et al. Cell-lineage specificity of primary cilia during postnatal epididymal development. Hum Reprod. 2018;33(10):1829-1838. doi:10.1093/humrep/dey276

Girardet L, Augière C, Asselin MP, Belleannée C. Primary cilia: biosensors of the male reproductive tract. Andrology. 2019;7(5):588-602. doi:10.1111/andr.12650

Arrighi S. Primary cilia in the basal cells of equine epididymis: a serendipitous finding. Tissue Cell. 2013;45(2):140-144. doi:10.1016/j.tice.2012.10.003

Araki Y, Suzuki K, Matusik RJ, Obinata M, Orgebin-Crist MC. Immortalized epididymal cell lines from transgenic mice overexpressing temperature-sensitive simian virus 40 large T-antigen gene. J Androl. 2002;23(6):854-869.

Fettiplace R, Kim KX. The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev. 2014;94(3):951-986. doi:10.1152/physrev.00038.2013

Spinelli KJ, Gillespie PG. Bottoms up: transduction channels at tip link bases. Nat Neurosci. 2009;12(5):529-530. doi:10.1038/nn0509-529

Vélez-Ortega AC, Freeman MJ, Indzhykulian AA, Grossheim JM, Frolenkov GI. Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells. eLife. 2017;6:e24661. doi:10.7554/eLife.24661

Delling M, Indzhykulian AA, Liu X, et al. Primary cilia are not calcium-responsive mechanosensors. Nature. 2016;531(7596):656-660. doi:10.1038/nature17426

Fischer RS. Move your microvilli. J Cell Biol. 2014;207(1):9-11. doi:10.1083/jcb.201409059

Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM. Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol. 2010;299(6):F1220-1236. doi:10.1152/ajprenal.00453.2010

Elkjaer M, Vajda Z, Nejsum LN, et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun. 2000;276(3):1118-1128. doi:10.1006/bbrc.2000.3505

Höfer D, Drenckhahn D. Cytoskeletal differences between stereocilia of the human sperm passageway and microvilli/stereocilia in other locations. Anat Rec. 1996;245(1):57-64. doi:10.1002/(SICI)1097-0185(199605)245:1<57::AID-AR10>3.0.CO;2-8

Murakami M, Shimada T, Huang CT, Obayashi I. Scanning Electron Microscopy of Epididymal Ducts in the Japanese Monkey (Macacus fuscatus) with Special Reference to the Architectural Analysis of Stereocilia. Arch Histol Jpn. 1975;38(2):101-107. doi:10.1679/aohc1950.38.101

ダウンロード

公開済


投稿日時: 2023-06-09 10:21:55 UTC

公開日時: 2023-06-13 01:44:03 UTC
研究分野
生物学・生命科学・基礎医学