A Mathematical model for the Pattern of COVID-19 Post-Vaccination Mortality
DOI:
https://doi.org/10.51094/jxiv.352キーワード:
Erlang distribution、 Model for the pattern of COVID-19 post-vaccination mortality抄録
In this article, we give a mathematical model for the pattern of post-vaccination mortality by using the Erlang distribution. This model is an analogue or generalization of Kiyoshi Ito's argument which describes radioactive decay.
利益相反に関する開示
The authors have no conflicts of interest directly relevant to the content of this article.ダウンロード *前日までの集計結果を表示します
引用文献
P. Billingsley, Probability and Measure, Third Edition (Wiley Series in Probability and Statistics),
, John Wiley & Sons Inc.
J. Y. Cho, K. H. Kim, N. Lee, S. H. Cho, S. Y. Kim, E. K. Kim, J.-H. Park, E.-Y. Choi, J.-O. Choi,
H. Park, H. Y. Kim, H. J. Yoon, Y. Ahn, M. H. Jeong, and J. G. Cho, COVID-19 vaccination-related
myocarditis: a Korean nationwide study, European Heart Journal, ehad339.
M. Ezekiel, Methods of Correlation Analysis, New York: John Wiley and Sons. 1930.
M. Fukushima, Y. Hirai, E. Nakatani, and T. Nishimura, Overview of COVID-19 post-vaccination
mortality and pharmacoepidemiological evaluation: nation-wide view and a proposal, Clinical Evaluation.
; 49 (3): 499–517.
M. Fukushima, T. Kikuchi, and Y. Hirai, Warnings and Requests to Coronavirus Vaccine Recipients
and All Healthcare Providers –Based on the case of a healthy 28-year-old man who died suddenly
of myocardial rhabdomyolysis 5 days after vaccination with the novel coronavirus vaccine, Clinical
Evaluation. 2023; 50 (4): 507–542.
N. Hulscher, P. E. Alexander, R. Amerling, H. Gessling, R. Hodkinson, W. Makis, H. A. Risch,
M. Trozzi, and P. A. McCullough, A Systematic Review of Autopsy Findings in Deaths after COVID-
Vaccination, https://doi.org/10.5281/zenodo.8120771
K. Itˆo, [Probability theory and I], Kakuritsuron to watashi (in Japanese), Iwanami Shoten, Publishers,
(2010/9/15), ISBN 9784000052085.
J. P. Klein and M. L. Moeschberger, Survival Analysis–Techniques for Censored and Truncated Data,
nd Edition. 2003, Springer Publishers, New York.
A. Knudson, Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci USA. 68
(4): 820–823.
M. Martcheva, An introduction to mathematical epidemiology. Texts Appl. Math., 61 Springer, New
York, 2015.
H. Nushida, A. Ito, H. Kurata, H. Umemoto, I. Tokunaga, H. Iseki, and A. Nishimura, A case of
fatal multi-organ inflammation following COVID-19 vaccination, Legal Medicine, Volume 63, July
, 102244.
H. G. Rosenblum, J. Gee, R. Liu, P. L. Marquez, B. Zhang, P. Strid, W. E. Abara, M. M. McNeil,
T. R. Myers, A. M. Hause, J. R. Su, L. E. Markowitz, T. T. Shimabukuro, and D. K. Shay. Safety of
mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme:
an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet
Infect Dis. 2022 Jun;22(6) : 802–812.
A. Sourmelidis and J. Steuding, Spirals of Riemann’s zeta-function–curvature, denseness and universality.
Math. Proc. Cambridge Philos. Soc.176 (2024), no. 2, 325–338.
J. Steuding, Value-distribution of L-functions. Lecture Notes in Math., 1877 Springer, Berlin, 2007.
W. Weibull, A statistical theory of the strength of materials. R Swedish Inst Eng Res. (1939) 151:
–45.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition (Cambridge
Mathematical Library), 1927, Cambridge University press.
ダウンロード
公開済
投稿日時: 2023-04-05 05:03:56 UTC
公開日時: 2023-04-06 02:49:10 UTC — 2024-05-27 09:59:41 UTCに更新
バージョン
改版理由
Some sentences are added in Section 4. Section 5 is added. Some references are added and replaced.ライセンス
Copyright(c)2023
Nakamura, Takashi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。