プレプリント / バージョン11

A Mathematical model for the Pattern of COVID-19 Post-Vaccination Mortality

##article.authors##

  • Nakamura, Takashi Institute of Liberal Arts and Sciences, Tokyo University of Science

DOI:

https://doi.org/10.51094/jxiv.352

キーワード:

Erlang distribution、 Model for the pattern of COVID-19 post-vaccination mortality

抄録

In this article, we give a mathematical model for the pattern of post-vaccination mortality by using the Erlang distribution. This model is an analogue or generalization of Kiyoshi Ito's argument which describes radioactive decay.

利益相反に関する開示

The authors have no conflicts of interest directly relevant to the content of this article.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

P. Billingsley, Probability and Measure, Third Edition (Wiley Series in Probability and Statistics), 1995, John Wiley & Sons Inc.

J. Y. Cho, K. H. Kim, N. Lee, S. H. Cho, S. Y. Kim, E. K. Kim, J.-H. Park, E.-Y. Choi, J.-O. Choi, H. Park, H. Y. Kim, H. J. Yoon, Y. Ahn, M. H. Jeong, and J. G. Cho, COVID-19 vaccination-related myocarditis: a Korean nationwide study, European Heart Journal, ehad339.

M. Ezekiel, Methods of Correlation Analysis, New York: John Wiley and Sons. 1930.

M. Fukushima, Y. Hirai, E. Nakatani, and T. Nishimura, Overview of COVID-19 post-vaccination mortality and pharmacoepidemiological evaluation: nation-wide view and a proposal, Clinical Evaluation. 2022; 49 (3): 499–517.

M. Fukushima, T. Kikuchi, and Y. Hirai, Warnings and Requests to Coronavirus Vaccine Recipients and All Healthcare Providers –Based on the case of a healthy 28-year-old man who died suddenly of myocardial rhabdomyolysis 5 days after vaccination with the novel coronavirus vaccine, Clinical Evaluation. 2023; 50 (4): 507–542.

N. Hulscher, P. E. Alexander, R. Amerling, H. Gessling, R. Hodkinson, W. Makis, H. A. Risch, M. Trozzi, and P. A. McCullough, A Systematic Review of Autopsy Findings in Deaths after COVID-19 Vaccination, https://doi.org/10.5281/zenodo.8120771

K. Itˆo, [Probability theory and I], Kakuritsuron to watashi (in Japanese), Iwanami Shoten, Publishers, (2010/9/15), ISBN 9784000052085.

J. P. Klein and M. L. Moeschberger, Survival Analysis–Techniques for Censored and Truncated Data, 2nd Edition. 2003, Springer Publishers, New York.

A. Knudson, Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci USA. 68 (4): 820–823.

M. Martcheva, An introduction to mathematical epidemiology. Texts Appl. Math., 61 Springer, New York, 2015.

H. Nushida, A. Ito, H. Kurata, H. Umemoto, I. Tokunaga, H. Iseki, and A. Nishimura, A case of fatal multi-organ inflammation following COVID-19 vaccination, Legal Medicine, Volume 63, July 2023, 102244.

H. G. Rosenblum, J. Gee, R. Liu, P. L. Marquez, B. Zhang, P. Strid, W. E. Abara, M. M. McNeil, T. R. Myers, A. M. Hause, J. R. Su, L. E. Markowitz, T. T. Shimabukuro, and D. K. Shay. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect Dis. 2022 Jun;22(6) : 802–812.

A. Sourmelidis and J. Steuding, Spirals of Riemann’s zeta-function–curvature, denseness and universality. Math. Proc. Cambridge Philos. Soc.176 (2024), no. 2, 325–338.

J. Steuding, Value-distribution of L-functions. Lecture Notes in Math., 1877 Springer, Berlin, 2007.

W. Weibull, A statistical theory of the strength of materials. R Swedish Inst Eng Res. (1939) 151: 1–45.

ダウンロード

公開済


投稿日時: 2023-04-05 05:03:56 UTC

公開日時: 2023-04-06 02:49:10 UTC — 2024-10-01 09:01:52 UTCに更新

バージョン

改版理由

Section 4 is rewirtten.
研究分野
生物学・生命科学・基礎医学