プレプリント / バージョン1

A Geometric Representation of the Second Law in Optimal Entropic Dimensionality

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.2601

キーワード:

Optimal Entropic Dimensionality (OED)、 Thermodynamic arrow、 Lyapunov function、 Gradient flow、 Information geometry、 Thermodynamic geometry、 Thermodynamic length、 Contact geometry、 Coarse-graining、 Irreversible thermodynamics

抄録

Equilibrium thermodynamics is often organized by minimizing potentials built from competing contributions (e.g. Helmholtz and Gibbs free energies). We introduce a compact protocol-level representation based on Optimal Entropic Dimensionality (OED), where an effective capacity Neff and an effective free payload Hfree (optionally separated from structured components) are treated as declared proxies of a coarse-graining. OED keeps the geometry class explicit through a single class parameter p>0. As a canonical reference point, the class p=2 reproduces the familiar Gaussian/Euclidean backbone via the OED–Gaussian free-energy isomorphism. The central move is a dimensionless filling coordinate ψ ≡ p Hfree / Neff that packages the balance between capacity and free payload into one number. In ψ-space, within the declared protocol, the induced one-dimensional ψ-potential Cp(ψ; Hfree) is strictly convex on ψ>0 with a unique minimizer at ψ=1, so equilibrium becomes a normalized geometric statement (“optimal filling”) once the bookkeeping protocol (estimators for Neff and Hfree) is fixed. Second-law-like directionality is treated as additional structure rather than a consequence of geometry alone. Without postulating a global state-space metric, we use the closed-form excess ΔCp(ψ) = (1/p)(ψ − 1 − ln ψ) as a scale-free departure from ψ=1. Under an illustrative coarse-grained closure in ψ-space, ΔCp decreases monotonically, separating equilibrium geometry from arrow-of-time statements while leaving any domain-canonical metric/length identification as a calibration-dependent extension.

利益相反に関する開示

The author declares that there are no conflicts of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd Edition, Wiley, 1985.

E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106 (4) (1957) 620–630. doi:10.1103/PhysRev.106.620.

E. T. Jaynes, Information theory and statistical mechanics II, Physical Review 108 (2) (1957) 171–190. doi:10.1103/PhysRev.108.171.

T. Imaizumi, Optimal entropic dimensionality: A continuous variational principle for geometric equilibrium, Jxiv preprint, version 1 (Dec. 2025). doi:10.51094/jxiv.2161. URL https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/2161

L. Onsager, Reciprocal relations in irreversible processes. I., Physical Review 37 (4) (1931) 405–426. doi: 10.1103/PhysRev.37.405.

U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in Physics 75 (12) (2012) 126001. doi:10.1088/0034-4885/75/12/126001.

F. Weinhold, Metric geometry of equilibrium thermodynamics, The Journal of Chemical Physics 63 (6) (1975) 2479–2483. doi:10.1063/1.431689.

G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics 67 (3) (1995) 605–659. doi:10.1103/RevModPhys.67.605.

P. Salamon, R. S. Berry, Thermodynamic length and dissipated availability, Physical Review Letters 51 (13) (1983) 1127–1130. doi:10.1103/PhysRevLett.51.1127.

G. E. Crooks, Measuring thermodynamic length, Physical Review Letters 99 (10) (2007) 100602. doi: 10.1103/PhysRevLett.99.100602.

D. A. Sivak, G. E. Crooks, Thermodynamic metrics and optimal paths, Physical Review Letters 108 (19) (2012) 190602. doi:10.1103/PhysRevLett.108.190602.

R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker–Planck equation, SIAM Journal on Mathematical Analysis 29 (1) (1998) 1–17. doi:10.1137/S0036141096303359.

C. Villani, Optimal Transport: Old and New, Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer, 2008.

D. Eberard, B. M. Maschke, A. J. van der Schaft, An extension of hamiltonian systems to the thermo-dynamic phase space: Towards a geometry of nonreversible processes, Reports on Mathematical Physics 60 (2) (2007) 175–198. doi:10.1016/S0034-4877(07)00024-9.

A. Bravetti, C. S. Lopez-Monsalvo, F. Nettel, Contact symmetries and hamiltonian thermodynamics, Annals of Physics 361 (2015) 377–400. doi:10.1016/j.aop.2015.07.010.

A. Bravetti, Contact geometry and thermodynamics, International Journal of Geometric Methods in Modern Physics 16 (supp01) (2019) 1940003. doi:10.1142/S0219887819400036.

S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics 22 (1) (1951) 79–86. doi:10.1214/aoms/1177729694.

S.-i. Amari, H. Nagaoka, Methods of Information Geometry, Vol. 191 of Translations of Mathematical Monographs, American Mathematical Society and Oxford University Press, 2000.

T. Imaizumi, Neural scaling: From empirical laws to geometric saturation, Jxiv preprint, version 1 (submitted 2025-12-19). (Dec. 2025). doi:10.51094/jxiv.2289. URL https://doi.org/10.51094/jxiv.2289

ダウンロード

公開済


投稿日時: 2026-01-13 09:26:29 UTC

公開日時: 2026-01-29 09:32:27 UTC
研究分野
物理学