A Geometric Representation of the Second Law in Optimal Entropic Dimensionality
DOI:
https://doi.org/10.51094/jxiv.2601キーワード:
Optimal Entropic Dimensionality (OED)、 Thermodynamic arrow、 Lyapunov function、 Gradient flow、 Information geometry、 Thermodynamic geometry、 Thermodynamic length、 Contact geometry、 Coarse-graining、 Irreversible thermodynamics抄録
Equilibrium thermodynamics is often organized by minimizing potentials built from competing contributions (e.g. Helmholtz and Gibbs free energies). We introduce a compact protocol-level representation based on Optimal Entropic Dimensionality (OED), where an effective capacity Neff and an effective free payload Hfree (optionally separated from structured components) are treated as declared proxies of a coarse-graining. OED keeps the geometry class explicit through a single class parameter p>0. As a canonical reference point, the class p=2 reproduces the familiar Gaussian/Euclidean backbone via the OED–Gaussian free-energy isomorphism. The central move is a dimensionless filling coordinate ψ ≡ p Hfree / Neff that packages the balance between capacity and free payload into one number. In ψ-space, within the declared protocol, the induced one-dimensional ψ-potential Cp(ψ; Hfree) is strictly convex on ψ>0 with a unique minimizer at ψ=1, so equilibrium becomes a normalized geometric statement (“optimal filling”) once the bookkeeping protocol (estimators for Neff and Hfree) is fixed. Second-law-like directionality is treated as additional structure rather than a consequence of geometry alone. Without postulating a global state-space metric, we use the closed-form excess ΔCp(ψ) = (1/p)(ψ − 1 − ln ψ) as a scale-free departure from ψ=1. Under an illustrative coarse-grained closure in ψ-space, ΔCp decreases monotonically, separating equilibrium geometry from arrow-of-time statements while leaving any domain-canonical metric/length identification as a calibration-dependent extension.
利益相反に関する開示
The author declares that there are no conflicts of interest.ダウンロード *前日までの集計結果を表示します
引用文献
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd Edition, Wiley, 1985.
E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106 (4) (1957) 620–630. doi:10.1103/PhysRev.106.620.
E. T. Jaynes, Information theory and statistical mechanics II, Physical Review 108 (2) (1957) 171–190. doi:10.1103/PhysRev.108.171.
T. Imaizumi, Optimal entropic dimensionality: A continuous variational principle for geometric equilibrium, Jxiv preprint, version 1 (Dec. 2025). doi:10.51094/jxiv.2161. URL https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/2161
L. Onsager, Reciprocal relations in irreversible processes. I., Physical Review 37 (4) (1931) 405–426. doi: 10.1103/PhysRev.37.405.
U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in Physics 75 (12) (2012) 126001. doi:10.1088/0034-4885/75/12/126001.
F. Weinhold, Metric geometry of equilibrium thermodynamics, The Journal of Chemical Physics 63 (6) (1975) 2479–2483. doi:10.1063/1.431689.
G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics 67 (3) (1995) 605–659. doi:10.1103/RevModPhys.67.605.
P. Salamon, R. S. Berry, Thermodynamic length and dissipated availability, Physical Review Letters 51 (13) (1983) 1127–1130. doi:10.1103/PhysRevLett.51.1127.
G. E. Crooks, Measuring thermodynamic length, Physical Review Letters 99 (10) (2007) 100602. doi: 10.1103/PhysRevLett.99.100602.
D. A. Sivak, G. E. Crooks, Thermodynamic metrics and optimal paths, Physical Review Letters 108 (19) (2012) 190602. doi:10.1103/PhysRevLett.108.190602.
R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker–Planck equation, SIAM Journal on Mathematical Analysis 29 (1) (1998) 1–17. doi:10.1137/S0036141096303359.
C. Villani, Optimal Transport: Old and New, Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer, 2008.
D. Eberard, B. M. Maschke, A. J. van der Schaft, An extension of hamiltonian systems to the thermo-dynamic phase space: Towards a geometry of nonreversible processes, Reports on Mathematical Physics 60 (2) (2007) 175–198. doi:10.1016/S0034-4877(07)00024-9.
A. Bravetti, C. S. Lopez-Monsalvo, F. Nettel, Contact symmetries and hamiltonian thermodynamics, Annals of Physics 361 (2015) 377–400. doi:10.1016/j.aop.2015.07.010.
A. Bravetti, Contact geometry and thermodynamics, International Journal of Geometric Methods in Modern Physics 16 (supp01) (2019) 1940003. doi:10.1142/S0219887819400036.
S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics 22 (1) (1951) 79–86. doi:10.1214/aoms/1177729694.
S.-i. Amari, H. Nagaoka, Methods of Information Geometry, Vol. 191 of Translations of Mathematical Monographs, American Mathematical Society and Oxford University Press, 2000.
T. Imaizumi, Neural scaling: From empirical laws to geometric saturation, Jxiv preprint, version 1 (submitted 2025-12-19). (Dec. 2025). doi:10.51094/jxiv.2289. URL https://doi.org/10.51094/jxiv.2289
ダウンロード
公開済
投稿日時: 2026-01-13 09:26:29 UTC
公開日時: 2026-01-29 09:32:27 UTC
ライセンス
Copyright(c)2026
Takeo Imaizumi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
