Optimal Entropic Dimensionality: A Continuous Variational Principle for Geometric Equilibrium
DOI:
https://doi.org/10.51094/jxiv.2161キーワード:
Effective dimension、 Model selection、 Scaling laws、 Information geometry、 Shannon entropy、 Variational principle、 Lp spaces、 Fisher information metric、 Complexity、 Sparse representation抄録
Systems that encode information into high-dimensional degrees of freedom confront a geometric trade-off between dilution (expansion) and crowding (compression). We introduce Optimal Entropic Dimensionality (OED), a variational framework in which effective dimensionality is treated as a continuous state variable and an equilibrium is selected by minimizing geometric size. Under isotropic Lp geometry, this yields the scaling law N * = pH, which balances geometric overhead against entropic density, with p determined by the underlying norm. To ground this law in a canonical setting, we analyze the Euclidean case (p = 2) via information geometry. We model distinguishable configurations as small geodesic balls with respect to the Fisher information metric under Jeffreys measure. Using Gamma-function and Stirling-type volume asymptotics, we obtain a logarithmic expansion cost and derive N * = 2H, up to constants independent of N. We then extend the variational structure to anisotropic systems. Correlations consume a structural log-volume Hstruct, leaving a free payload H_free = H - H_struct. This leads to the structure corrected optimum N * approx p(H - H_struct), supported by both a geometric bulk hyper-rectangle model and an independent whitening-based entropy transformation. OED thus furnishes a geometric coordinate system [N, H, p] for complexity, organizing regimes from sparse (p approx 1), through a log-base calibration point (p = 1/ ln 2), to robustness-oriented limits (p -> infinity) beyond the Euclidean benchmark.
利益相反に関する開示
The author declares that there are no conflicts of interest.ダウンロード *前日までの集計結果を表示します
引用文献
H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control 19 (6) (1974) 716-723. doi:10.1109/TAC.1974.1100705.
C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (3-4) (1948) 379-423; 623-656, published in two parts (No. 3 and No. 4). doi:10.1002/j.1538-7305.1948.tb01338.x.
S.-i. Amari, H. Nagaoka, Methods of Information Geometry, Vol. 191 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 2000.
D. L. Donoho, High-dimensional data analysis: The curses and blessings of dimensionality, AMS Math Challenges Lecture, lecture notes / slides (commonly circulated). (2000).
B. A. Olshausen, D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996) 607-609. doi:10.1038/381607a0.
J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, D. Amodei, Scaling laws for neural language models, arXiv preprint arXiv:2001.08361 (2020). URL https://arxiv.org/abs/2001.08361
R. Penrose, Singularities and time-asymmetry, in: S. W. Hawking, W. Israel (Eds.), General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, 1979, pp. 581-638.
ダウンロード
公開済
投稿日時: 2025-12-08 09:02:42 UTC
公開日時: 2025-12-10 02:27:13 UTC
ライセンス
Copyright(c)2025
Takeo Imaizumi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
