A Free-Energy Bayesian Framework for Probabilistic Stability under Noisy and Limited Data
DOI:
https://doi.org/10.51094/jxiv.1650キーワード:
Free Energy Principle、 Bayesian Inference、 Probabilistic Stability、 Lyapunov Function、 Variational Inference、 Robust Learning、 Noisy Data抄録
Learning systems often face instability when trained on limited or noisy data. We present a Free-Energy–Bayesian Framework that unifies free-energy minimization with a Bayesian stability index to construct a composite Lyapunov-like function ensuring probabilistic stability. Theoretical analysis establishes Lyapunov convergence under mild assumptions, while experiments on synthetic noisy datasets confirm robustness and reduced variance compared to baselines.
利益相反に関する開示
The author declares no conflict of interest.ダウンロード *前日までの集計結果を表示します
引用文献
Friston, K. (2005). A theory of cortical responses. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360, 815–836.
Friston, K. (2010). The free-energy principle: A unified brain theory? *Nature Reviews Neuroscience*, 11(2), 127–138.
Bishop, C. M. (2006). *Pattern Recognition and Machine Learning*. Springer.
Khalil, H. K. (2002). *Nonlinear Systems* (3rd ed.). Prentice Hall.
ダウンロード
公開済
投稿日時: 2025-10-13 10:24:12 UTC
公開日時: 2025-10-17 05:17:03 UTC
ライセンス
Copyright(c)2025
Sakai, Jun

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。