プレプリント / バージョン1

重力の曲率場定式化:時空の物理的再構成に向けて

曲率場シリーズ 第II部――量子曲率から巨視的重力へ

##article.authors##

  • kim, seungil-il Independent Researcher

DOI:

https://doi.org/10.51094/jxiv.1579

キーワード:

曲率場(C4)、 Φ–曲率場方程式(PCFE)、 強重力リング不変量 (R,Θ)、 事象の地平線望遠鏡(EHT)、次世代EHT(ngEHT)、 太陽系PPN/1PN制約、 SPARC銀河回転曲線、 宇宙論スナップイン(CMB・BAO・重力レンズ)、 変分テーパー(外縁テイル)、 モデル選択(AIC・BIC・ベイズ因子)

抄録

本論文(Part II)は、先行研究 Introducing the Curvature Field Function(Part I)で提案した「曲率場」仮説を、量子領域から巨視的な重力へ拡張し、統一的に検証するものです。固定ポリシー(マスク・ウィンドウ・共分散)を全領域で共通化し、SPARC銀河回転曲線、EHTリング、太陽系PPN、CMB/BAOスナップインを標準化不変量 (R,Θ)(R,\Theta)(R,Θ) と線形応答 (μ,Σ)(\mu,\Sigma)(μ,Σ) で読み替えます。その結果、曲率場(C4/PCFE)は一般相対論の基準線と両立しつつ、追加の暗黒セクターを導入せずに主要観測を整合的に再現できることを示しました。理論の詳細は付録に再現手順を明記し、結論は今後の高分解能VLBI/ngEHTおよび宇宙論データでさらに検証可能です。

利益相反に関する開示

著者は開示すべき利益相反はありません。

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

I. Newton, Philosophiæ Naturalis Principia Mathematica (London, 1687). [English translation: Mathematical Principles of Natural Philosophy, University of California Press (1934)].

A. Einstein, Die Feldgleichungen der Gravitation, Annalen der Physik 49, 769–822 (1915).

K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1916), pp. 189–196. Reproduced at ADS Harvard Archive.

C. Brans and R. H. Dicke, Mach’s Principle and a Relativistic Theory of Gravitation, Phys. Rev. 124, 925 (1961).

M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophysical Journal 270, 365 (1983).

J. W. Moffat, Scalar–tensor–vector gravity theory, JCAP 2006(03), 004 (2006).

S. S. McGaugh, F. Lelli, and J. M. Schombert, Radial acceleration relation in rotationally supported galaxies, Phys. Rev. Lett. 117, 201101 (2016).

F. Lelli, S. S. McGaugh, and J. M. Schombert, SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves, Astron. J. 152, 157 (2016).

NASA JPL, GRACE Gravity Data Products, https://grace.jpl.nasa.gov/data/get-data/.

National Geospatial-Intelligence Agency (NGA), EGM2008 Earth Gravitational Model, https://earth-info.nga.mil/GandG/wgs84/index.html. Accessed: 26 Aug 2025.

NASA Science, Moon — By the Numbers, https://science.nasa.gov/moon/by-the-numbers/. Accessed: 24 Sep 2025.

NASA Solar System Exploration, Planet Compare, https://solarsystem.nasa.gov/planetcompare/. Accessed: 26 Aug 2025.

NASA Solar System Exploration, The Sun — By the Numbers, https://solarsystem.nasa.gov/sun-by-the-numbers/. Accessed: 26 Aug 2025.

SPARC Team, SPARC Data Portal, https://astroweb.case.edu/SPARC/ (accessed August 28, 2025).

Kim, Seung-il, Introducing the Curvature Field Function: Toward a Geometric Formulation of Wavefunction Collapse, jxiv (2025). doi:10.51094/jxiv.1522.

Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019). doi:10.3847/2041-8213/ab0ec7

Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett. 875, L6 (2019). doi:10.3847/2041-8213/ab1141

Event Horizon Telescope Collaboration et al., First M87 Event Horizon Telescope Results. VII. Polarization of the Ring, Astrophys. J. Lett. 910, L12 (2021). doi:10.3847/2041-8213/abe71d

Event Horizon Telescope Collaboration et al., First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 930, L12 (2022). doi:10.3847/2041-8213/ac6674

Event Horizon Telescope Collaboration et al., First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett. 930, L17 (2022). doi:10.3847/2041-8213/ac6756

Johnson, M. D., Akiyama, K., Blackburn, L., et al., Key Science Goals for the Next-Generation Event Horizon Telescope, Galaxies 11, 61 (2023). doi:10.3390/galaxies11030061

Cappellari, M., Emsellem, E., Krajnovi´c, D., McDermid, R. M., Scott, N., Verdoes Kleijn, G. A., Young, L. M., Alatalo, K., Bacon, R., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Khochfar, S., Kuntschner, H., Lablanche, P.-Y., Morganti, R., Naab, T., Oosterloo, T., Sarzi, M., Serra, P., & Weijmans, A.-M., The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria, Monthly Notices of the Royal Astronomical Society 413, 813-836 (2011). doi:10.1111/j.1365-2966.2010.18174.x

A. Sinha, A. Vijay, and U. Sinha, “On the superposition principle in interference experiments,” Scientific Reports, vol. 5, 10304 (2015). DOI:10.1038/srep10304

M.Kaur and M.Singh, Quantum double-double-slit experiment with momentum entangled photons, Scientific Reports 10, 11427 (2020). https://doi.org/10.1038/s41598-020-68181-1

Zeng, M. & Yong, E.H. (2017). Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Scientific Reports, 7, 12077.

Kolenderski, P., Scarcelli, G., Johnson, K. D., Hamel, D. R., Holloway, C., Shalm, L. K., Tisa, S., Tosi, A., Resch, K. J., & Jennewein, T. (2014). Time-resolved double-slit interference pattern measurement with entangled photons. Scientific Reports, 4, 4685.

Busnaina, J. H., Shi, Z., MacDonald, A., Dubynka, D., Nsanzineza, I., Hung, J. C. H., Chang, C. W. S., Clerk, A. A., & Wilson, C. M. (2024). Quantum simulation of the bosonic Kitaev chain. Nature Communications, 15, Article 47186. https://www.nature.com/articles/s41467-024-47186-8

Magaña-Loaiza, O. S., De Leon, I., Mirhosseini, M., Fickler, R., Safari, A., Mick, U., McIntyre, B., Banzer, P., Rodenburg, B., Leuchs, G., & Boyd, R. W. (2017). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 8, 13987. https://doi.org/10.1038/ncomms13987.

Namdar, A., Shadman, Z., & Sadeghi, S. M. (2021). Experimental Higher-Order Interference in a Nonlinear Triple Slit. https://arxiv.org/abs/2112.06965.

Hernquist, L., An Analytical Model for Spherical Galaxies and Bulges, Astrophys. J. 356, 359–364 (1990). doi:10.1086/168845.

Dehnen, W., A family of potential–density pairs for spherical galaxies and bulges, Mon. Not. R. Astron. Soc. 265, 250–256 (1993). doi:10.1093/mnras/265.1.250.

Sérsic, J. L., Atlas de galaxias australes, Observatorio Astronómico, Córdoba (1968).

Prugniel, P. & Simien, F., The fundamental plane of early-type galaxies: nonhomology of the spatial structure, Astron. Astrophys. 321, 111–122 (1997). ADS: 1997A&A...321..111P.

A. S. Bolton, S. Burles, L. V. E. Koopmans, T. Treu, R. Gavazzi, L. A. Moustakas, R. Wayth, and D. J. Schlegel, The Sloan Lens ACS Survey. V. The Full ACS Strong-Lens Sample, Astrophys. J. 682, 964–984 (2008). doi:10.1086/589327.

M. W. Auger, T. Treu, A. S. Bolton, R. Gavazzi, L. V. E. Koopmans, P. J. Marshall, K. Bundy, and L. A. Moustakas, The Sloan Lens ACS Survey. IX. Colors, Lensing, and Stellar Masses of Early-type Galaxies, Astrophys. J. 705, 1099–1115 (2009). doi:10.1088/0004-637X/705/2/1099.

A. S. Bolton, S. Burles, L. V. E. Koopmans, T. Treu, and D. J. Eisenstein, The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Galaxies and Their Lensed Emitters, Astrophys. J. 638, 703–724 (2006). ADS: 2006ApJ...638..703B ; arXiv:astro-ph/0511453 ; doi:10.1086/498884.

B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374–376 (2003).

J. G.Williams, S. G. Turyshev, and D. H. Boggs, Lunar Laser Ranging Tests of the Equivalence Principle, Class. Quantum Grav. 29, 184004 (2012).

S. G. Turyshev and J. G. Williams, Space-based tests of gravity with laser ranging, Int. J. Mod. Phys. D 16, 2165–2179 (2007).

K. Akiyama et al. (EHT Collaboration), The persistent shadow of the supermassive black hole of M87. II. Model comparisons and theoretical interpretations, Astron. Astrophys. 693, A265 (2025). doi:10.1051/0004-6361/202451296.

H. Jia, A. Lupsasca, A. Staines et al., Photon ring interferometric signatures beyond the universal ring, Phys. Rev. D 110, 083044 (2024). doi:10.1103/PhysRevD.110.083044.

R. K. Walia, A. He, D. Kapec, A. Lupsasca, Spacetime measurements with the photon ring, Phys. Rev. D 111, 104074 (2025). doi:10.1103/PhysRevD.111.104074.

A. Shlentsova et al., Imaging the event horizon of M87* from space on different baselines, Astron. Astrophys. 685, A84 (2024). doi:10.1051/0004-6361/202347214.

R. Abbott et al. (LIGO–Virgo–KAGRA Collaboration), GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run, Phys. Rev. X 13, 041039 (2023). doi:10.1103/PhysRevX.13.041039.

S. Birrer and T. Treu, Time-Delay Cosmography: Measuring the Hubble Constant with Strong Gravitational Lensing, Space Sci. Rev. 220, 72 (2024). doi:10.1007/s11214-024-01079-w.

A. J. Shajib et al. (TDCOSMO), TDCOSMO. XII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy, Astron. Astrophys. 673, A9 (2023). publisher page; arXiv:2301.02656.

X. Wang, P. Chen, T. Zhu, Is a photon ring invariably a closed structure? Eur. Phys. J. C 84, 527 (2024). doi:10.1140/epjc/s10052-024-13527-6.

ダウンロード

公開済


投稿日時: 2025-09-30 18:09:36 UTC

公開日時: 2025-10-08 08:19:05 UTC
研究分野
物理学