曲率場関数の導入:波動関数収縮の幾何学的定式化に向けて
三重スリット実験におけるソーキン・パラメータκのベンチマーク
DOI:
https://doi.org/10.51094/jxiv.1522キーワード:
曲率–位相場、 波動関数の収縮、 量子干渉、 三重スリット実験、 ソーキンパラメータ κ、 ゲイン不変性、 正規化(Ver.2)、 フラウンホーファー回折、 非古典的経路抄録
本研究は、量子干渉における幾何学的な抑制を表す curvature-phase (PhiPsi) 場を導入し、波動関数の崩壊を有限の曲率予算の消費として位置づける。振幅は “A squared = 1 / (1 + (grad Phi)^2)” により減衰し、動力学はラグランジアン項に結合される。検証には Sinha らの三重スリット実験から得られる Sorkin パラメータ kappa(theta) を用い、Version-2 フルプロファイル指標(単一ゲイン事前当てはめ)で model kappa_PhiPsi と experimental kappa_exp を比較した。報告パラメータ (lambda = 810 nm, w = 30 um, d = 100 um, L ~ 18–20 cm) と固定乱数種の下で、モデルは解析形状を再現し、kappa で約 96.4% の一致を得た(Gaussian と Bohmian の基準は約 74.6% と 76.0%)。感度解析 (+/-10% in {w, d, L}) でも形状相関は保たれ、アブレーションでは一致度が系統的に低下した。CI 指標は別途に報告し、kappa と混在させない。以上より、恣意的なスケール調整なしに波動関数崩壊を幾何学的に定式化できることを示す。
利益相反に関する開示
著者は開示すべき利益相反はありません。ダウンロード *前日までの集計結果を表示します
引用文献
N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696–702 (1935). DOI:10.1103/PhysRev.48.696 Free PDF (CERN)
G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34, 470–491 (1986). DOI:10.1103/PhysRevD.34.470
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables I & II, Phys. Rev. 85, 166–193 (1952). DOI:10.1103/PhysRev.85.166
A. Ashtekar and T. A. Schilling, Geometrical Formulation of Quantum Mechanics, arXiv:gr-qc/9706069 (1997). https://arxiv.org/abs/gr-qc/9706069
Kocsis, S., et al., Observing the average trajectories of single photons in a two-slit interferometer, Science 332, 1170–1173 (2011). DOI:10.1126/science.1202218
L. Hackermüller et al., “Wave nature of biomolecules and fluorofullerenes,” Physical Review Letters 91, 090408 (2003). https://doi.org/10.1103/PhysRevLett.91.090408
J. Eglinton, F. Carollo, I. Lesanovsky, and K. Brandner, Stochastic Thermodynamics at the Quantum Classical Boundary, Quantum (accepted 2024). https://quantum-journal.org/papers/q-2024-09-26- 1486/pdf
Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y. & Scully, M.O., Delayed “choice” quantum eraser, Phys. Rev. Lett. 84, 1–5 (1999). DOI:10.1103/PhysRevLett.84.1
S. Tamate et al., “Observation of geometric phases in quantum erasers,” (2009). arXiv:0907.2289 (Experimental analysis of the theory in [11])
A. Sinha, A. Vijay, and U. Sinha, “On the superposition principle in interference experiments,” Scientific Reports, vol. 5, 10304 (2015). DOI:10.1038/srep10304
R. Sawant, J. Samuel, A. Sinha, S. Sinha, and U. Sinha, Nonclassical paths in quantum interference experiments, Phys. Rev. Lett. 113, 120406 (2014). DOI:10.1103/PhysRevLett.113.120406
T. W. B. Kibble, Geometrization of Quantum Mechanics, Commun. Math. Phys. 65, 189–201 (1979). DOI:10.1007/BF01225149 ProjectEuclid (Open Access PDF)
J. C. Garrison and E. M. Wright, Complex geometrical phases for dissipative systems, Phys. Lett. A 128, 177–181 (1988). DOI:10.1016/0375-9601(88)90905-X
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392, 45–57 (1984). DOI:10.1098/rspa.1984.0023
M. S. Sarandy and D. A. Lidar, Abelian and non-Abelian geometric phases in adiabatic open quantum systems, Phys. Rev. A 73, 062101 (2006). DOI:10.1103/PhysRevA.73.062101
J.A. Ferrari and E.M. Garbusi, “Phase-shifting (Sagnac) interferometer with external phase control,” Applied Optics 44, 4510–4512 (2005). https://doi.org/10.1364/AO.44.004510
M.Kaur and M.Singh, Quantum double-double-slit experiment with momentum entangled photons, Scientific Reports 10, 11427 (2020). https://doi.org/10.1038/s41598-020-68181-1
Zeng, M. & Yong, E.H. (2017). Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Scientific Reports, 7, 12077.
Kolenderski, P., Scarcelli, G., Johnson, K. D., Hamel, D. R., Holloway, C., Shalm, L. K., Tisa, S., Tosi, A., Resch, K. J., & Jennewein, T. (2014). Time-resolved double-slit interference pattern measurement with entangled photons. Scientific Reports, 4, 4685.
Moldoveanu, F. (2015). Quantum Mechanics from Invariance Principles. Journal of Physics: Conference Series, 626, 012067
Birrell, N. D., & Davies, P. C. W. (1984). Quantum Fields in Curved Space. Cambridge University Press.
Kiefer, C., & Polarski, D. (1998). Emergence of classicality for primordial fluctuations: Concepts and analogies. Annalen der Physik, 7(3), 137–158.
Holmström, M. & Wang, X.-D. (2015). Details of a Hybrid Model for the Interaction between the Solar Wind and Planets Implemented in FLASH. arXiv:1509.08744v1 [physics.space-ph].
Hossenfelder, S. (2012). Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16, 2.
M. Hatifi, Quantum Gravity Without Metric Quantization: From Hidden Variables to Hidden Spacetime Curvatures, arXiv:2502.08421 (2025). https://arxiv.org/abs/2502.08421
Boschero, J.C., Neumann, N.M. P., van der Schoot, W., & Phillipson, F. (2024). Performing Non-Local Phase Estimation with a Rydberg-Superconducting Qubit Hybrid. arXiv:2403.14647 [quant-ph].
Busnaina, J. H., Shi, Z., MacDonald, A., Dubynka, D., Nsanzineza, I., Hung, J. C. H., Chang, C. W. S., Clerk, A. A., & Wilson, C. M. (2024). Quantum simulation of the bosonic Kitaev chain. Nature Communications, 15, Article 47186. https://www.nature.com/articles/s41467-024-47186-8
De Raedt, H., Michielsen, K., & Hess, K. (2011). Multi-order interference is generally nonzero. https://arxiv.org/abs/1103.0121.
Magaña-Loaiza, O. S., De Leon, I., Mirhosseini, M., Fickler, R., Safari, A., Mick, U., McIntyre, B., Banzer, P., Rodenburg, B., Leuchs, G., & Boyd, R. W. (2016). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 8, 13987. https://doi.org/10.1038/ncomms13987.
Namdar, A., Shadman, Z., & Sadeghi, S. M. (2021). Experimental Higher-Order Interference in a Nonlinear Triple Slit. https://arxiv.org/abs/2112.06965.
Magaña-Loaiza, O. S., Gao, W., Perez-Leija, A., U’Ren, A. B., Busch, K., Christodoulides, D. N., & Boyd, R. W. (2021). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 12, 5059. https://www.nature.com/articles/s41467-021-25489-4.
Hong, M., Dawkins, R. B., Bertoni, B., You, C., & Magaña-Loaiza, O. S. (2024). Nonclassical near-field dynamics of surface plasmons. Nature Physics, 20(5), 830–835. https://doi.org/10.1038/s41567-024-02426-y.
Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 76, 1267 (2005). https://doi.org/10.1103/RevModPhys.76.1267
Bassi, A., Großardt, A., & Ulbricht, H. Gravitational decoherence. Class. Quantum Grav., 34(19), 193002 (2017). https://doi.org/10.1088/1361-6382/aa864f
X.-S. Ma, J.Kofler, A.Zeilinger, Delayed-choice gedanken experiments and their realizations, Rev. Mod. Phys. 88, 015005 (2016). DOI:10.1103/RevModPhys.88.015005
M.O. Scully, K.Drühl, Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics, Phys. Rev. A 25, 2208–2213 (1982). DOI:10.1103/PhysRevA.25.2208
Shalm, L. K. et al. (2015). Strong Loophole-Free Test of Local Realism, arXiv:1511.03189v1.
Rosenfeld, W., Burchardt, D., Garthoff, R., Redeker, K., Ortegel, N., Rau, M., & Weinfurter, H. (2017). Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Physical Review Letters, 119, 010402. DOI:10.1103/PhysRevLett.119.010402
CMS Collaboration, "Observation of quantum entanglement in top quark pair production", arXiv:2406.03976v2 (2024).
D. Gabor, A new microscopic principle, Nature 161, 777–778 (1948). DOI:10.1038/161777a0
A. Aspect, P. Grangier, and G. Roger, “Experimental Realization of Einstein-Podolsky- Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities,” Phys. Rev. Lett. 49, 1804 (1982). doi:10.1103/PhysRevLett.49.1804
G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81, 5039 (1998). doi:10.1103/PhysRevLett.81.5039
Di Martino, G., Sonnefraud, Y., Tame, M. S., Kena-Cohen, S., Dieleman, F., Özdemir, S. K., Kim, M. S., & Maier, S. A. (2014). Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys. Rev. Applied, 1(3), 034004. DOI:10.1103/PhysRevApplied.1.034004
Sinha, U., Couteau, C., Jennewein, T., Laflamme, R., and Weihs, G., Testing Born’s Rule in Quantum Mechanics with a Triple-Slit Experiment, arXiv:1007.4193v1 (2010). https://arxiv.org/abs/1007.4193
G. C. Ghirardi, P. Pearle, and A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42, 78 (1990).
L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165 (1989).
R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28, 581 (1996).
A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests, Rev. Mod. Phys. 85, 471 (2013).
M. Born and E. Wolf, Principles of Optics, Cambridge University Press (1999), see Ch. 3–4 for eikonal equation.
Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman Lectures on Physics, Vol. 3. Addison-Wesley. https://www.feynmanlectures.caltech.edu/
ダウンロード
公開済
投稿日時: 2025-09-09 10:10:20 UTC
公開日時: 2025-09-26 00:22:23 UTC
ライセンス
Copyright(c)2025
Kim, Seung-il

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。