プレプリント / バージョン1

酵母細胞におけるヒト細胞質スーパーオキシドジスムターゼ1による小胞体ストレス惹起

##article.authors##

  • Ngoc Trang Nguyen 奈良先端科学技術大学院大学先端科学技術研究科
  • 木俣(石渡), 有紀 奈良先端科学技術大学院大学先端科学技術研究科
  • 細見, 昭 信州大学総合理工学研究科
  • 木俣, 行雄 奈良先端科学技術大学院大学先端科学技術研究科 https://orcid.org/0000-0002-0942-5385 https://researchmap.jp/unfolded

DOI:

https://doi.org/10.51094/jxiv.1505

キーワード:

神経変性疾患、 異常蛋白質応答、 サッカロミセス・セレビジエ

抄録

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, which triggers a transcriptome shift known as the unfolded protein response (UPR) commonly in eukaryotic species. Nevertheless, in some neurodegenerative diseases, the UPR is somehow induced by aggregation of cytosolic pathogenic proteins. To address the UPR induction mechanism by human superoxide dismutase 1 (hSOD1), the aggregation of which causes amyotrophic lateral sclerosis, here we used yeast Saccharomyces cerevisiae as a simple model organism. Expression of hSOD1 or its mutant increased UPR levels in S. cerevisiae cells carrying a knockout mutation of the STE24 gene, which encodes an ER-located membrane-integral protein that digests cytosolic proteins aberrantly translocated to the ER. Our findings cumulatively indicate that SOD1 induces ER stress and UPR by disturbing protein and lipid-membrane homeostasis in and on the ER.

利益相反に関する開示

全著者は、本論文に関して、開示すべき利益相反関連事項はない。

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Adams, A., Gottschling, D.E., Kaiser, C.A., Stearns, T. (1997). Methods in Yeast Genetics, 1997 : A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Ast, T., Michaelis, S., Schuldiner, M. (2016). The protease Ste24 clears clogged translocons. Cell,164, 103-114.

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications.Yeast, 14, 115-132.

Chen, Y., Brandizzi, F. (2013). IRE1: ER stress sensor and cell fate executor. Trends Cell Biol, 23, 547-555.

Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., Hieter, P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene, 110, 119-122.

Epremyan, K.K., Mamaev, D.V., Zvyagilskaya, R.A. (2023). Alzheimer's disease: significant benefit from the yeast-based models. Int J Mol Sci, 24, 9791.

Gardner, B.M., Walter, P. (2011). Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science, 333, 1891-1894.

Giaever, G., Nislow, C. (2014). The yeast deletion collection: a decade of functional genomics. Genetics, 197, 451-465.

Goblirsch, B.R., Wiener, M.C. (2020). Ste24: An integral membrane protein zinc metalloprotease with provocative structure and emergent biology. J Mol Biol, 432, 5079-5090.

Halbleib, K., Pesek, K., Covino, R., Hofbauer, H.F., Wunnicke, D., Hänelt, I., Hummer G., Ernst, R. (2017). Activation of the unfolded protein response by lipid bilayer stress. Mol Cell, 67, 673-684.

Hayashi, Y., Homma, K., Ichijo, H. (2016). SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul, 60, 95-104.

Hetz, C., Papa, F.R. (2018). The unfolded protein response and cell fate control. Mol Cell, 69, 169-181.

Hosomi, A., Iida, K., Cho, T., Iida, H., Kaneko, M., Suzuki, T. (2020). The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in. J Biol Chem, 295, 10406-10419.

Hosomi, A., Okachi, C., Fujiwara, Y. (2023). Human SOD1 is secreted via a conventional secretion pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 666, 101-106.

Hwang, J., Qi, L. (2018). Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci, 43, 593-605.

Ishiwata-Kimata, Y., Kimata, Y. (2023). Fundamental and applicative aspects of the unfolded protein response in yeasts. J Fungi (Basel), 9, 989.

Kim, S., Kim, D.K., Jeong, S., Lee, J. (2022). The common cellular events in the neurodegenerative diseases and the associated role of endoplasmic reticulum stress. Int J Mol Sci, 23, 5894.

Kimata, Y., Ishiwata-Kimata, Y., Ito, T., Hirata, A., Suzuki, T., Oikawa, D., Takeuchi, M., Kohno, K. (2007). Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol, 179, 75-86.

Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y., Kohno, K. (2004). A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol, 167, 445-456.

Le, Q.G., Ishiwata-Kimata, Y., Phuong, T.H., Fukunaka, S., Kohno, K., Kimata, Y. (2021). The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress. Sci. Rep. 11, 4506.

Liguori, F., Amadio, S., Volonté, C. (2021). Where and why modeling amyotrophic lateral sclerosis. Int J Mol Sci, 22, 3977.

Mori, K. (2009). Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem, 146, 743-750.

Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota, T., Fukutomi, H., Noguchi, T., Matsuzawa A., Takeda T., Ichijo, H. (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22, 1451-1464.

Phuong, H.T., Ishiwata-Kimata, Y., Kimata, Y. (2023). An ER-accumulated mutant of yeast Pma1 causes membrane-related stress to induce the unfolded protein response. Biochem Biophys Res Commun, 667, 58-63.

Promlek, T., Ishiwata-Kimata, Y., Shido, M., Sakuramoto, M., Kohno, K., Kimata, Y. (2011). Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell, 22, 3520-3532.

Sikorski, R.S., Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19-27.

Tran, D.M., Takagi, H., Kimata, Y. (2019). Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants. Biosci. Biotechnol. Biochem. 83, 326-329.

Tsuburaya, N., Homma, K., Higuchi, T., Balia, A., Yamakoshi, H., Shibata, N. Nakamura, S., Nakagawa, H., Ikeda, S.I., Umezawa, N., Kato, N., Yokoshima, S., Shibuya, M., Shimonishi, M., Kojima, H., Okabe, T., Nagano, T., Naguro, I., Imamura, K., Inoue, H., Fujisawa, T., Ichijo, H. (2018). A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat Commun, 9 , 2668.

Urushitani, M., Ezzi, S.A., Matsuo, A., Tooyama, I., Julien, J. P. (2008). The endoplasmic reticulum-Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS. FASEB J, 22 , 2476-2487.

Walter, N.S., Gorki, V., Bhardwaj, R., Punnakkal, P. (2025). Endoplasmic reticulum stress: Implications in diseases. Protein J, 44, 147-161.

Wang, X.X., Chen, W.Z., Li, C., Xu, R.S. (2024). Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev Neurosci, 35, 549-563.

Wu, X., Rapoport, T.A. (2018). Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol, 53, 22-28.

ダウンロード

公開済


投稿日時: 2025-09-01 11:11:50 UTC

公開日時: 2025-09-02 09:56:24 UTC
研究分野
生物学・生命科学・基礎医学