プレプリント / バージョン1

A mathematical solution to Yang-Mills existence and mass gap problem, one of the Millennium problems

##article.authors##

  • Fukushima, Kimichika Theoretical Division, South Konandai Science Research

DOI:

https://doi.org/10.51094/jxiv.994

キーワード:

Yang-Mills field、 Yang-Mills existence、 mass gap

抄録

In this article, the Poincar{\'e}/Lorentz covariant/invariant formalism without ultraviolet divergences gives an answer to the Yang-Mills existence problem of the longstanding Millennium problem (MP), since axiomatic approaches use traditional field properties. The first cutoff, corresponding physically to the cutoff of quadratic self-energies caused by Higgs fields, divides the four-dimensional spacetime continuum into arbitrarily shaped elements. Fields are expanded using scalar plane-waves with continuous four-momentum of quantum particles. The local alignment of spacetime elements is periodic without long-range order. Then, an effective field with discrete momentums is introduced. Particles are rarely excited in interactions with this effective field. The higher energy of the second cutoff corresponds physically to the Planck energy, preventing unphysical losses of high-energy intermediate states into black holes. Quantities, which correspond physically to vacuum expectation values of operators, utilize the first cutoff. Next, pure Yang-Mills fields composed of variational stationary classical fields and quantum fluctuations are considered. The Wilson loop for the classical field yields a linear potential between a charge and an anticharge, and the stabilization energy provides a mass gap. The action has a local mass from the classical field. These masses present an answer to the mass gap problem of the MP.

利益相反に関する開示

There are no conflicts of interest to declare.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

URL: https://www.claymath.org/millennium/yang-mills-the-maths-gap/.

P. Ramond, Field Theory: A Modern Primer, 3rd prn. (Benjamin, Reading, 1982).

D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill, Great Britain, 1978).

W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Oxford University Press, London, 1954).

S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York,1961).

J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

V. Weisskopf, Uber die Elektrodynamic des Vakuums auf Grund der Quanten-Theorie des Elektrons, Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddeleser XIV, Nr. 6, 3-39 (1936).

V. F. Weisskopf, On the self-energy and the electromagnetic field of the electron, Phys. Rev. 56, no. 1, 72-85 (1939). DOI:10.1103/PhysRev.56.72.

S. Tomonaga, On a relativistically invariant formulation of the quantum theory of wave fields, Prog. Theor. Phys. 1, no. 2, 27-42 (1946). DOI:10.1143/PTP.1-27.

S. Tomonaga and J. R. Oppenheimer, On infinite field reactions in quantum field theory, Phys. Rev. 74, no. 2, 224 (1948). DOI:10.1103/PhysRev.74.224.

J. Schwinger, Quantum electrodynamics. III. The electromagnetic properties of the electron?Radiative corrections to scattering, Phys. Rev. 76, no. 6, 790-817 (1949). DOI:10.1103/PhysRev.76.790.

R. P. Feynman, Space-time approach to quantum electrodynamics, Phys. Rev. 76, no. 6, 769-789 (1949). DOI:10.1103/PhysRev.76.769.

F. J. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Phys. Rev. 75, no. 11, 486-502 (1949). DOI:10.1103/PhysRev.75.486.

F. J. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. 75, no. 11, 1736-1755 (1949). DOI:10.1103/PhysRev.75.1736.

J. Schwinger (Ed.), Selected Papers on Quantum Electrodynamics (Dover Publications, New York, 1958).

URL: https://indico.cern.ch/event/691515/contributions/2970044/attachments/

/2715580/Terning-1.pdf.

K. Fukushima, Gauge-invariant Ritz’s method for electrodynamics, Phys. Rev. D 30, no. 6, 1251-1255 (1984). MR 0758747 (85g:81237). DOI:10.1103/PhysRevD.30.1251.

K. Fukushima and H. Sato, Role of Lie algebra for confinement in non-Abelian gauge field scheme, Bulg. J. Phys. 41, no. 2, 142-171 (2014).

K. Fukushima and H. Sato, Toward construction of a consistent field theory with Poincare covariance in terms of step-function-type basis functions for gauge fields, Internat. J. Modern Phys. A 32, no. 21, 1730017 (2017). MR 3681129. DOI:10.1142/S0217751X17300174.

K. Fukushima and H. Sato, Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda, Eur. Phys. J. C 78, 315 (2018). DOI:10.1140/epjc/s10052-018-5784-2.

K. Fukushima and H. Sato, Consideration on the relationship of theoretical ultraviolet cut-off energy with experimental data, Bulg. J. Phys. 50, no. 1, 76-94 (2023). DOI:10.55318/bgjp.2023.50.1.076,

A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations (John Wiley & Sons, New York, 1977).

C. M. Bender, K. A. Milton, and D. H. Sharp, Consistent formulation of fermions on a Minkowski lattice, Phys. Rev. Lett. 51, no. 20, 1815-1818 (1983). DOI:10.1103/PhysRevLett.51.1815.

N .D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

C. Kittel, Introdoction to Solid State Physics (Wiley, New York, 1956).

C. Kittel, Quantum Theory of Solids (John Wiley & Sons, New York, 1963).

G. V. Kulikov and G. B. Khristiansen, On the size spectrum of extensive air showers, Zh. Eksp. Teor. Fiz. 35, no 3, 635-640 (1958). URL: http://jetp.ras.ru/cgi-bin/dn/e 008 03 0441.pdf.

S. Yoshida and A. Ishihara, Constraints on the origin of the ultrahigh energy cosmic rays using cosmic diffuse neutrino flux limits: An analytical approach, Phys. Rev. D 85, no. 6, 06300208 (2012). DOI:10.1103/PhysRevD.85.063002.

IceCube Collab. (M. G. Aartsen et al.), Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube, Phys. Rev. D 100, no. 8, 082002 (2019). DOI:10.1103/PhysRevD.100.082002. arXiv:1906.04317.

A. Hallgren, In Ice Neutrino Radio Detection Projects, in PoS Proc. Sci. PoS(NEUTEL2015)035 (2015). URL: https://pos.sissa.it/244/035/pdf.

Z. Maki, M. Sato, and S. Tomonaga, Scattering problem in the intermediate-coupling theory, Prog. Theor. Phys. 9, no. 6, 193-218 (1953). DOI:10.1143/PTPS.2.193.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th revised English edn. (Elsevier, Amsterdam, 1951).

A. M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. 72B, no. 4, 477-480 (1978). DOI:10.1016/0370-2693(78)90737-2.

ダウンロード

公開済


投稿日時: 2024-12-09 03:17:35 UTC

公開日時: 2024-12-17 01:33:05 UTC
研究分野
物理学