A mathematical solution to Yang-Mills existence and mass gap problem, one of the Millennium problems
DOI:
https://doi.org/10.51094/jxiv.994キーワード:
Yang-Mills existence、 mass gap、 mathematical solution抄録
In this article, the Poincar{\'e}/Lorentz covariant/invariant formalism without ultraviolet divergences gives an answer to the Yang-Mills existence problem of Millennium problem (MP), since axiomatic approaches use traditional field properties. Fields are expanded using scalar plane-waves with continuous four-momentum of quantum particles. Because of asymptotic freedom, Yang-Mills theory become trivial with vanishing interactions for the infinite cutoff energy. To avoid the triviality, the main procedure introduces a cutoff. In mathematics, for the metric of the four-dimensional spacetime continuum (on which Yang-Mills fields are defined), only in the case where metric is determined from general relativity like Riemannian geometry, the cutoff scale is restricted to the Planck energy, preventing unphysical losses of intermediate states into black holes. Only for applications of mathematics to physics, self-energies due to Higgs fields will be cut off by dividing spacetime into arbitrary-shaped elements. Next, pure Yang-Mills fields composed of variational stationary classical fields and quantum fluctuations are considered. The Wilson loop for the classical field yields a linear potential between a charge and an anticharge, and the stabilization energy provides a mass gap. The action has a local mass from the classical field. These masses present an answer to the mass gap problem of the MP.
利益相反に関する開示
There are no conflicts of interest to declare.ダウンロード *前日までの集計結果を表示します
引用文献
URL: https://www.claymath.org/millennium/yang-mills-the-maths-gap/.
P.Ramond, Field Theory: A Modern Primer, 3rd prn. (Benjamin, Reading, 1982).
D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill, Great Britain, 1978).
W. Heitler, The Quantum Theory of Radiation}, 3rd edn. (Oxford University Press, London, 1954).
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York, 1961).
J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
V. Weisskopf, Uber die Elektrodynamic des Vakuums auf Grund der Quanten-Theorie des Elektrons, Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddeleser XIV, Nr. 6, 3-39 (1936).
V. F. Weisskopf, On the self-energy and the electromagnetic field of the electron, Phys. Rev. 56, no. 1, 72-85 (1939). DOI:10.1103/PhysRev.56.72.
S. Tomonaga, On a relativistically invariant formulation of the quantum theory of wave fields, Prog. Theor. Phys. 1, no. 2, 27-42 (1946). DOI:10.1143/PTP.1-27.
S. Tomonaga and J. R. Oppenheimer, On infinite field reactions in quantum field theory, Phys. Rev. 74, no. 2, 224 (1948). DOI:10.1103/PhysRev.74.224.
J. Schwinger, Quantum electrodynamics. III. The electromagnetic properties of the electron--Radiative corrections to scattering, Phys. Rev. 76, no. 6, 790-817 (1949). DOI:10.1103/PhysRev.76.790.
R. P. Feynman, Space-time approach to quantum electrodynamics, Phys. Rev. 76, no. 6, 769-789 (1949). DOI:10.1103/PhysRev.76.769.
F. J. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Phys. Rev. 75, no. 11, 486-502 (1949). DOI:10.1103/PhysRev.75.486.
F. J. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. 75, no. 11, 1736-1755 (1949). DOI:10.1103/PhysRev.75.1736.
J. Schwinger (Ed.), Selected Papers on Quantum Electrodynamics (Dover Publications, New York, 1958).
K. Fukushima, Gauge-invariant Ritz's method for electrodynamics, Phys. Rev. D 30, no. 6, 1251-1255 (1984). MR 0758747 (85g:81237). DOI:10.1103/PhysRevD.30.1251.
K. Fukushima and H. Sato, Role of Lie algebra for confinement in non-Abelian gauge field scheme, Bulg. J. Phys. 41, no. 2, 142-171 (2014).
K. Fukushima and H. Sato, Toward construction of a consistent field theory with Poincare covariance in terms of step-function-type basis functions for gauge fields, Internat. J. Modern Phys. A 32, no. 21, 1730017 (2017). MR 3681129. DOI:10.1142/S0217751X17300174.
K. Fukushima and H. Sato, Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda, Eur. Phys. J. C 78, 315 (2018). DOI:10.1140/epjc/s10052-018-5784-2.
K. Fukushima and H. Sato, Consideration on the relationship of theoretical ultraviolet cut-off energy with experimental data, Bulg. J. Phys. 50, no. 1, 76-94 (2023). DOI:10.55318/bgjp.2023.50.1.076.
A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations} (John Wiley & Sons, New York, 1977).
C. M. Bender, K. A. Milton, and D. H. Sharp, Consistent formulation of fermions on a Minkowski lattice, Phys. Rev. Lett. 51, no. 20, 1815-1818 (1983). DOI:10.1103/PhysRevLett.51.1815.
N .D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
URL: https://indico.cern.ch/event/691515/contributions/2970044/attachments/1688257/2715580/Terning-1.pdf.
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956).
C. Kittel, Quantum Theory of Solids (John Wiley & Sons, New York, 1963).
Z. Maki, M. Sato, and S. Tomonaga, Scattering problem in the intermediate-coupling theory, Prog. Theor. Phys. 9, no. 6, 193-218 (1953). DOI:10.1143/PTPS.2.193.
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th revised English edn. (Elsevier, Amsterdam, 1951).
A. M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. 72B, no. 4, 477-480 (1978). DOI:10.1016/0370-2693(78)90737-2.
I. Montvay and G. Munster, Quantum Fields on a Lattice (Cambridge University Press, 1994). DOI:10.1017/CBO9780511470783.
A. Das, Lectures on Quantum Field Theory (World Sci. Publ., Singapore, 2008). DOI:10.1142/6938.
M. Bohm, A. Denner, and H. Joos, Gauge Theories of the Strong and Electroweak Interaction, 3rd edn. (Vieweg+Teubner Verlag, Wiesbadenc, 2001). DOI:10.1007/978-3-322-80160-9.
C. Wen-Xiang, A Comprehensive Approach to the Yang-Mills Existence and Mass Gap Problem Using Differential Geometry and Dynamical Systems, ffhal-05006045f (2025). URL: https://hal.science/hal-05006045v1
M. Lavelle and D. McMullan, Collinearity, convergence and cancelling infrared divergences, J. High Energy Phys. 2006, JHEP03 (2006). DOI:10.1088/1126-6708/2006/03/026.
URL: https://gsalam.web.cern.ch/repository/talks/2015-SaoPaulo-lecture2.pdf
URL: https://en.wikipedia.org/wiki/Infrared_divergence
G. V. Kulikov and G. B. Khristiansen, On the size spectrum of extensive air showers, Zh. Eksp. Teor. Fiz. 35, no 3, 635-640 (1958). URL: http://jetp.ras.ru/cgi-bin/dn/e_008_03_0441.pdf.
S. Yoshida and A. Ishihara, Constraints on the origin of the ultrahigh energy cosmic rays using cosmic diffuse neutrino flux limits: An analytical approach, Phys. Rev. D 85, no. 6, 06300208 (2012). DOI:10.1103/PhysRevD.85.063002.
IceCube Collab. (M. G. Aartsen et al.), Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube, Phys. Rev. D 100, no. 8, 082002 (2019). DOI:10.1103/PhysRevD.100.082002.
A.Hallgren, In Ice Neutrino Radio Detection Projects, in PoS Proc. Sci. PoS(NEUTEL2015)035 (2015). URL: https://pos.sissa.it/244/035/pdf.
ダウンロード
公開済
投稿日時: 2024-12-09 03:17:35 UTC
公開日時: 2024-12-17 01:33:05 UTC — 2025-10-06 02:27:07 UTCに更新
バージョン
- 2025-10-06 02:27:07 UTC(2)
- 2024-12-17 01:33:05 UTC(1)
改版理由
セクション2.2、2.4を部分的にAppendices (Appendix A-Appendix Cで構成)へ移し、セクション2.2、2.4とレンマ3.2をアップデートしました。ライセンス
Copyright(c)2024
Fukushima, Kimichika
この作品は、Creative Commons Attribution 4.0 International Licenseの下でライセンスされています。
