Study on Risk Reduction in Localization of Cloud-Supported Autonomous Mobile Robots
DOI:
https://doi.org/10.51094/jxiv.930キーワード:
Autonomous mobile robots、 self-localization、 sensor fusion、 cloud robotics、 communication failure resilience抄録
In recent years, outdoor robotics applications have trended towards the "cloud robotics" approach, which involves offloading processing to other computation-rich locations via communication with the cloud, due to the increasing complexity of the tasks the robots are required to perform. However, network conditions in outdoor environments are often volatile, leading to significant performance degradation or unstable behavior in robots due to poor communication with the cloud. To address this issue, we propose a method that combines minimal self-localization capabilities on the robot side with advanced self-localization processing on the cloud side, integrating and interpolating the two. This paper discusses implementing 2D self-localization on the robot and 3D self-localization on the cloud, clarifies the characteristics of each and proposes a fusion method that leverages the features of both self-localization techniques for high accuracy and robustness against communication failures. Adaptive Monte Carlo localization (AMCL), which is a common algorithm for two-dimensional self-localization, was used on the robot side. We implemented two fusion methods: a time-varying weighted average (TVWA) and an unscented Kalman filter (UKF), and showed that these methods can reduce the maximum error compared to using the AMCL alone by approximately 0.11 m with the TVWA and by approximately 0.15 m with the UKF.
利益相反に関する開示
We have no conflict of interest.ダウンロード *前日までの集計結果を表示します
引用文献
X. Zhang, J. Lai, D. Xu, H. Li, and M. Fu, 2D Lidar-Based SLAM and Path Planning for Indoor Rescue Using Mobile Robots, J. Adv. Transp., vol. 2020, pp.1--14, 2020. DOI: 10.1155/2020/8867937
T. Ruiz, S. De Raucourt, Y. Petillot, and D. M. Lane, Concurrent mapping and localization using sidescan sonar, IEEE J. Oceanic Eng., vol. 29, no. 2, pp.442--456, 2004. DOI: 10.1109/JOE.2004.829790
L. von Stumberg, V. Usenko, J. Engel, J. Stuckler, and D. Cremers, "From monocular SLAM to autonomous drone exploration," in Proc. Euro. Conf. Mobile Robot., 2017. DOI: 10.1109/ECMR.2017.8098709
A. Ohya and N. Shimaji, Commercial Production of Optical Range-sensor for Intelligent Robot, J. Robot. Soc. Jpn., vol. 23, no. 2, pp.181--184, 2005. DOI: 10.7210/jrsj.23.181
S. Raikwar, H. Yu, and T. Herlitzius, 2D LIDAR SLAM Localization System for a Mobile Robotic Platform in GPS Denied Environment, J. Biosyst. Eng., vol. 48, no. 2, pp.123--135, 2023., doi:DOI: 10.1007/s42853-023-00176-y
J. Xiong, Y. Liu, X. Ye, L. Han, H. Qian, and Y. Xu, "A hybrid lidar-based indoor navigation system enhanced by ceiling visual codes for mobile robots," in 2016 IEEE Int. Conf. Robot. and Biomimetics (ROBIO), Qingdao, China, 2016, pp. 1715-1720, doi: DOI: 10.1109/ROBIO.2016.7866575.
W. L. Liu, X. P. Zhao, and B. G. Xu, Application of Constructing Three-Dimensional Model Using Laser Scanning Technology, Appl. Mech. Mater., vol. 94--96, pp.86--89, 2011., doi:DOI: 10.4028/www.scientific.net/amm.94-96.86 DOI: 10.4028/www.scientific.net/AMM.94-96.86
J. Y. Ren et al. "LIDAR EKF-SLAM Technology and Its Application in Automated Guided Vehicle Navigation." DEStech Trans. Comput. Sci. Eng., 2018,DOI: 10.12783/dtcse/iciti2018.29102
Y. Kanuki, N. Ohta, N. Nakazawa, "Development of Autonomous Moving Robot Using Appropriate Technology for Tsukuba Challenge," J. Robot. Mechatron., vol. 35, no. 2, pp. 279-287, 2023. DOI: 10.20965/jrm.2023.p0279
G. Hu, W. P. Tay, and Y. Wen, Cloud robotics: Architecture, challenges and applications, IEEE Netw., vol. 26, no. 3, pp.21--28, 2012. DOI: 10.1109/MNET.2012.6201212
K. Konno, Advantages and Disadvantages of Using Cloud Computing: A Comparison of Cloud Computing and On-Premise System, Ger. Policy Stud., vol. 22, pp.17--33, 2012.
M. Nabeta, K. Mima, and K. Tobita, Research on Risk Assessment in Cloud Control of Autonomous Mobile Robots, in JSME Conf. Robot. Mechatron., June 28 -- July 1, 2023. DOI: 10.1299/jsmermd.2023.1A2-I06
J. Zhang, W. Wen, F. Huang, Y. Wang, X. Chen, and L.-T. Hsu, GNSS-RTK Adaptively Integrated with LiDAR/IMU Odometry for Continuously Global Positioning in Urban Canyons, Appl. Sci, vol. 12, no. 10, p.5193, 2022. DOI: 10.3390/app12105193
Z. Niu, X. Zhao, J. Sun, L. Tao, and B. Zhu, A Continuous Positioning Algorithm Based on RTK and VI-SLAM with Smartphones, IEEE Access, vol. 8,185638--185650, 2020. DOI: 10.1109/ACCESS.2020.3028119
D. Lu and E. Schnieder, Performance evaluation of GNSS for train localization, IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp.1054--1059, 2014. DOI: 10.1109/TITS.2014.2349353
S. Thrun, D. Fox, W. Burgard, and F. Dellaert, Robust Monte Carlo localization for mobile robots, Artif. Intell., vol. 128, no. 1-2, pp.99--141, 2001. (Elsevier. ) DOI: 10.1016/S0004-3702(01)00069-8
W. Xu and F. Zhang, Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter, IEEE Robot. Autom. Lett., vol. 6, no. 2, pp.3317--3324, 2021. DOI: 10.1109/LRA.2021.3064227
S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, in Proc. IEEE, vol. 92, no. 3, pp.401--422, Mar. 2004., doi:DOI: 10.1109/JPROC.2003.823141
ダウンロード
公開済
投稿日時: 2024-10-15 07:49:29 UTC
公開日時: 2024-10-18 00:32:51 UTC
ライセンス
Copyright(c)2024
Mao Nabeta
Kazuteru Tobita
Seiya Nakamura
Kazuhiro Mima
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。