細胞骨格・分子モーターの異常と精神疾患:統合失調症と自閉スペクトラム症を中心に
DOI:
https://doi.org/10.51094/jxiv.885キーワード:
細胞骨格、 分子モーター、 統合失調症、 自閉スペクトラム症、 ミクログリア抄録
精神疾患の病態メカニズムの解明は、精神医学研究の重要な課題である。近年、神経細胞の構造と機能を制御する細胞骨格と分子モーターの異常が、統合失調症や自閉症スペクトラム障害(ASD)などの精神疾患の発症に関与している可能性が注目されている。微小管、アクチンフィラメント、中間径フィラメントからなる細胞骨格、およびキネシン、ダイニン、ミオシンなどの分子モーターは、神経発達、シナプス形成、神経伝達に重要な役割を果たしている。統合失調症では、微小管関連タンパクMAP2の発現低下やDISC1遺伝子の異常が報告されており、これらは樹状突起の形態異常や神経発達障害につながると考えられる。また、KIF17やKIF1Aなどの分子モーターの異常が、シナプス可塑性の異常を引き起こす可能性が指摘されている。ASDにおいては、Myosin Idがリスク遺伝子として同定され、樹状突起スパインに局在することが明らかになっている。さらに、SHANK3やCYFIP1などのアクチン関連タンパクの異常が、シナプス機能障害を引き起こすことが示されている。これらの知見は、精神疾患が複数の細胞骨格・分子モーター関連タンパク質の異常によって生じる複雑な病態であることを示唆している。今後は、個々のタンパク質の機能解明とともに、グリア細胞を含めた包括的な研究アプローチが求められる。これらの研究の進展は、精神疾患の病態メカニズム理解を深め、新たな治療戦略の開発につながる可能性がある。
利益相反に関する開示
著者らは、競合する利害関係がないことを宣言する。ダウンロード *前日までの集計結果を表示します
引用文献
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010 Jan 28;463(7280):485–92.
Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009 Oct;10(10):682–96.
Franker MAM, Hoogenraad CC. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci. 2013 Jun 1;126(Pt 11):2319–29.
Marchisella F. Abnormalities of the microtubule system and impaired neurite outgrowth in psychiatric disorders. Neural Plast. 2016;
De Rubeis S, The DDD Study, He X, Goldberg AP, Poultney CS, Samocha K, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014 Nov;515(7526):209–15.
Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012 Jan;37(1):4–15.
Padmanabhan A, Lynch CJ, Schaer M, Menon V. The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Sep;2(6):476–86.
Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016 Aug 19;353(6301):772–7.
Neuroinflammation in schizophrenia and autism spectrum disorders: Recent advances. Progress in Neuro-Psychopharmacology and Biological Psychiatry.
Hirokawa N, Takemura R. Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci. 2005 Mar;6(3):201–14.
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7004–11.
Conde C, Cáceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009 May;10(5):319–32.
Takei Y, Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol. 2000 Sep 4;150(5):989–1000.
Kapitein LC, Hoogenraad CC. Building the neuronal microtubule cytoskeleton. Neuron. 2015 Aug 5;87(3):492–506.
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol. 2011 Mar 1;3(3):a001800–a001800.
Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci. 2008 May;9(5):344–56.
Okamoto K-I, Nagai T, Miyawaki A, Hayashi Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci. 2004 Oct;7(10):1104–12.
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull. 2009 Oct 28;80(4–5):282–95.
Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990 Feb 23;60(4):585–95.
Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010 Nov 18;68(4):610–38.
Mandal A, Drerup CM. Axonal transport and mitochondrial function in neurons. Front Cell Neurosci. 2019 Aug 9;13:373.
Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 2004 Aug 19;43(4):513–25.
Cosker KE, Segal RA. Neuronal signaling through endocytosis. Cold Spring Harb Perspect Biol. 2014 Feb 1;6(2):a020669–a020669.
Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol. 2013 Nov;14(11):713–26.
Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006 Oct;16(10):530–7.
Vallee RB, Tsai J-W. The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev. 2006 Jun 1;20(11):1384–93.
Heerssen HM, Pazyra MF, Segal RA. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat Neurosci. 2004 Jun;7(6):596–604.
Tojima T, Itofusa R, Kamiguchi H. Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis. J Neurosci. 2014 May 21;34(21):7165–78.
Hartman MA, Spudich JA. The myosin superfamily at a glance. J Cell Sci. 2012 Apr 1;125(Pt 7):1627–32.
Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron. 2010 Aug;67(4):603–17.
Kneussel M, Wagner W. Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci. 2013 Apr;14(4):233–47.
Wang Z, Edwards JG, Riley N, Provance DW Jr, Karcher R, Li X-D, et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell. 2008 Oct 31;135(3):535–48.
Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7746–50.
Jones LB, Johnson N, Byne W. Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res Neuroimaging. 2002 Jul;114(3):137–48.
DeGiosio R, Kelly RM, DeDionisio AM, Newman JT, Fish KN, Sampson AR, et al. MAP2 immunoreactivity deficit is conserved across the cerebral cortex within individuals with schizophrenia. NPJ Schizophr. 2019 Aug 28;5(1):13.
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 2011 Nov 18;12(12):707–22.
Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, et al. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet. 2006 Apr 15;15(8):1245–58.
Kähler AK, Djurovic S, Rimol LM, Brown AA, Athanasiu L, Jönsson EG, et al. Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area. Biol Psychiatry. 2011 Jan 1;69(1):90–6.
Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, et al. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci. 2007 Jan 10;27(2):355–65.
Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry. 2011 May;68(5):477–88.
Rami G, Caillard O, Medina I, Pellegrino C, Fattoum A, Ben-Ari Y, et al. Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons. Hippocampus. 2006;16(2):183–97.
Toro CT, Hallak JEC, Dunham JS, Deakin JFW. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett. 2006 Sep 1;404(3):276–81.
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010 Jan;119(1):7–35.
Ratta-Apha W, Mouri K, Boku S, Ishiguro H, Okazaki S, Otsuka I, et al. A decrease in protein level and a missense polymorphism of KIF17 are associated with schizophrenia. Psychiatry Res. 2015 Dec 15;230(2):424–9.
Yin X, Feng X, Takei Y, Hirokawa N. Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo. J Neurosci. 2012 Apr 18;32(16):5486–99.
Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch K-P. Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol. 2013 Jun;23(6):492–507.
Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 1995 Jun 2;81(5):769–80.
Alsabban AH, Morikawa M, Tanaka Y, Takei Y, Hirokawa N. Kinesin Kif3b mutation reduces NMDAR subunit NR2A trafficking and causes schizophrenia-like phenotypes in mice. EMBO J. 2020 Jan 2;39(1):e101090.
Vissers LELM, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, et al. A de novo paradigm for mental retardation. Nat Genet. 2010 Dec;42(12):1109–12.
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci. 2013 Nov;36(11):641–51.
Yue W, Yu X, Zhang D. Progress in genome-wide association studies of schizophrenia in Han Chinese populations. NPJ Schizophr. 2017 Aug 10;3(1):24.
Stone JL, Merriman B, Cantor RM, Geschwind DH, Nelson SF. High density SNP association study of a major autism linkage region on chromosome 17. Hum Mol Genet. 2007 Mar 15;16(6):704–15.
Koshida R, Tome S, Takei Y. Myosin Id localizes in dendritic spines through the tail homology 1 domain. Exp Cell Res. 2018 Jun;367(1):65–72.
Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ. Expression and localization of myosin-1d in the developing nervous system. Brain Res. 2012 Feb 27;1440:9–22.
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007 Feb;81(2):89–131.
Long H, Zhu X, Yang P, Gao Q, Chen Y, Ma L. Myo9b and RICS modulate dendritic morphology of cortical neurons. Cereb Cortex. 2013 Jan;23(1):71–9.
Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009 May 28;459(7246):528–33.
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007 Jan;39(1):25–7.
Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999 Jul;23(3):569–82.
Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet. 2007 Jul 15;16(14):1682–98.
De Rubeis S, Pasciuto E, Li KW, Fernández E, Di Marino D, Buzzi A, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron. 2013 Sep;79(6):1169–82.
Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, et al. Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet. 2010 Nov 15;19(22):4462–73.
Tovey CA, Conduit PT. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 2018 Dec 7;62(6):765–80.
Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002 Oct;32(2):316–20.
Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10438–43.
Hamdan FF, Gauthier J, Araki Y, Lin D-T, Yoshizawa Y, Higashi K, et al. Excess of DE Novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet. 2011 Apr;88(4):516.
Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol. 1998 Apr 20;141(2):431–41.
Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet. 2013 Jun;45(6):639–47.
Rosito M, Sanchini C, Gosti G, Moreno M, De Panfilis S, Giubettini M, et al. Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays. Cell Rep. 2023 Feb 28;42(2):112104.
Adrian M, Weber M, Tsai M-C, Glock C, Kahn OI, Phu L, et al. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun. 2023 Oct 9;14(1):6322.
Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. Sci Adv. 2020 Dec;6(51):eabc8355.
ダウンロード
公開済
投稿日時: 2024-09-05 23:50:52 UTC
公開日時: 2024-09-06 08:14:31 UTC
ライセンス
Copyright(c)2024
樋口, 浩輝
中村, 賢佑
久保, 明澄
左中, 彩恵
神谷, 沙羅
佐々木, 哲也
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。