プレプリント / バージョン1

Efficient kinematics using quaternions for serial and antiparallel link robot arms

##article.authors##

  • 西井, 一敏 トヨタ自動車株式会社 未来創生センター
  • 奥松, 美宏 トヨタ自動車株式会社 未来創生センター
  • 羽多野, 顕 トヨタ自動車株式会社 未来創生センター

DOI:

https://doi.org/10.51094/jxiv.874

キーワード:

kinematics、 parallel link

抄録

デュアルクォータニオンは、ロボット運動学において同次変換行列の代替として提案されています。クォータニオンを用いて逆運動学計算の解析勾配を導出するためには、対数クォータニオンへの変換が必要ですが、二つの課題が残っています。初期誤差が大きい状態では、解析的勾配が非常に大きくなり、安定した収束が得られません。また、収束過程において局所解に陥る傾向があります。さらに、パラレルリンク機構の効率的なモデリング手法はまだ議論されていません。本研究では、クォータニオンの解析的勾配を安定的に得るための新しい手法を提案します。提案手法は、シリアルリンク機構とアンチパラレルリンク機構を組み合わせたロボットアームに適用され、アンチパラレルリンク機構のための新しい運動学モデリング手法が提案されました。提案手法は従来の方法よりも安定した解を提供し、解の精度が約10%向上したことが確認されました。

利益相反に関する開示

No potential conflicts of interest were disclosed

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

W. R. Hamilton, Elements of quaternions. Longmans, Green, & Company, 1866.

X. Wang and H. Zhu, “On the comparisons of unit dual quaternion and homogeneous transformation matrix,” Advances in Applied Clifford Algebras, vol. 24, pp. 213–229, 2014.

N. A. Aspragathos and J. K. Dimitros, “A comparative study of three methods for robot kinematics,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 2, pp. 135–145, 1998.

J. Funda, R. H. Taylor, and R. P. Paul, “On homogeneous transforms, quaternions, and computational efficiency,” IEEE transactions on Robotics and Automation, vol. 6, no. 3, pp. 382–388, 1990.

A. T. Yang and F. Freudenstein, “Application of dual-number quaternion algebra to the analysis of spatial mechanisms,” Journal of Applied Mechanics, vol. 31, no. 2, pp. 300–308, 1964.

H.-L. Pham, V. Perdereau, B. V. Adorno, and P. Fraisse, “Position and orientation control of robot manipulators using dual quaternion feedback,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 658–663, IEEE, 2010.

M. d. P. A. Fonseca, B. V. Adorno, and P. Fraisse, “Coupled task-space admittance controller using dual quaternion logarithmic mapping,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6057–6064, 2020.

R. N. Colomba, R. Laha, L. F. Figueredo, and S. Haddadin, “Adaptive admittance control for cooperative manipulation using dual quaternion representation and logarithmic mapping,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 107–144, IEEE, 2022.

H. Abaunza, R. Chandra, E. Özgür, J. A. C. Ramón, and Y. Mezouar, “Kinematic screws and dual quaternion based motion controllers,” Control Engineering Practice, vol. 128, p. 105325, 2022.

L. Figueredo, B. V. Adorno, J. Y. Ishihara, and G. A. Borges, “Robust kinematic control of manipulator robots using dual quaternion representation,” in 2013 IEEE International Conference on Robotics and Automation, pp. 1949–1955, IEEE, 2013.

B. V. Adorno, P. Fraisse, and S. Druon, “Dual position control strategies using the cooperative dual task-space framework,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3955–3960, IEEE, 2010.

F. F. Afonso Silva, J. José Quiroz-Omaña, and B. Vilhena Adorno, “Dynamics of mobile manipulators using dual quaternion algebra,” Journal of Mechanisms and Robotics, vol. 14, no. 6, p. 061005, 2022.

J. Cheng, J. Kim, Z. Jiang, and W. Che, “Dual quaternion-based graphical slam,” Robotics and Autonomous Systems, vol. 77, pp. 15– 24, 2016.

X. Wang, C. Yu, and Z. Lin, “A dual quaternion solution to attitude and position control for rigid-body coordination,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1162–1170, 2012.

H. J. Savino, L. C. Pimenta, J. A. Shah, and B. V. Adorno, “Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators,” Journal of the Franklin Institute, vol. 357, no. 1, pp. 142–178, 2020.

B. V. Adorno, Two-arm manipulation: From manipulators to enhanced human-robot collaboration. PhD thesis, Université Montpellier IISciences et Techniques du Languedoc, 2011.

X. Yang, H. Wu, Y. Li, and B. Chen, “A dual quaternion solution to the forward kinematics of a class of six-dof parallel robots with full or reductant actuation,” Mechanism and Machine Theory, vol. 107, pp. 27–36, 2017.

V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel delta robot using dual quaternions and a neural network,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 9, p. 440, 2021.

D. Chevallier, “Lie algebras, modules, dual quaternions and algebraic methods in kinematics,” Mechanism and Machine Theory, vol. 26, no. 6, pp. 613–627, 1991.

M. Gouasmi, “Robot kinematics, using dual quaternions,” IAES International Journal of Robotics and Automation, vol. 1, no. 1, p. 13, 2012.

D.-P. Han, Q. Wei, and Z.-X. Li, “Kinematic control of free rigid bodies using dual quaternions,” International Journal of Automation and Computing, vol. 5, pp. 319–324, 2008.

X. Wang, D. Han, C. Yu, and Z. Zheng, “The geometric structure of unit dual quaternion with application in kinematic control,” Journal of Mathematical Analysis and Applications, vol. 389, no. 2, pp. 1352– 1364, 2012.

E. Özgür and Y. Mezouar, “Kinematic modeling and control of a robot arm using unit dual quaternions,” Robotics and Autonomous Systems, vol. 77, pp. 66–73, 2016.

N. T. Dantam, “Robust and efficient forward, differential, and inverse kinematics using dual quaternions,” The International Journal of Robotics Research, vol. 40, no. 10-11, pp. 1087–1105, 2021.

K. Nishii, A. Hatano, and Y. Okumatsu, “Ultra-low inertia 6-dof manipulator arm for touching the world,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 432–438, IEEE, 2023.

J.-P. Merlet, Parallel robots, vol. 128. Springer Science & Business Media, 2006.

G. S. Chirikjian, Stochastic models, information theory, and Lie groups, volume 2: Analytic methods and modern applications, vol. 2. Springer Science & Business Media, 2011.

P. Beeson and B. Ames, “Trac-ik: An open-source library for improved solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935, IEEE, 2015.

S. Kumar, N. Sukavanam, and R. Balasubramanian, “An optimization approach to solve the inverse kinematics of redundant manipulator,” International Journal of Information and System Sciences (Institute for Scientific Computing and Information), vol. 6, no. 4, pp. 414–423, 2010.

ダウンロード

公開済


投稿日時: 2024-09-03 00:14:21 UTC

公開日時: 2024-09-05 04:40:54 UTC
研究分野
機械工学