プレプリント / バージョン1

Comparative anatomy of respiratory bronchioles and lobular structures in mammals

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.854

キーワード:

Comparative anatomy、 Respiratory bronchiole、 Lobular structure、 Interlobular septum、 Lung

抄録

Rodents are widely used to study the toxicity of chemicals, but differences between species mean that results from rodents are not always directly transferrable to humans. The health of workers exposed to various chemicals and particulates in high doses or for long durations is at risk. The respiratory bronchioles and lobular structures are key sites for occupational lung diseases like pneumoconiosis, but these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures across different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, facilitating early detection, treatment, and prevention.

利益相反に関する開示

The authors have no competing interests to disclose.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

West JB. How Well Designed Is the Human Lung? Am J Respir Crit Care Med 173: 583–584. 2006.

West JB, Watson RR, and Fu Z. The human lung: did evolution get it wrong? European Respiratory Journal 29: 11–17. 2007.

Francis H. Y. G, Vallyathan V, and Hahn FF. Comparative pathology of environmental lung disease: an overview. Toxicol Pathol 35: 136–147. 2007.

Snipes MB, McClellan RO, Mauderly JL, and Wolff RK. Retention Patterns for Inhaled Particles in the Lung: Comparisons Between Laboratory Animals and Humans for Chronic Exposures. Health Physics 57: 69. 1989.

Chen Q, Klein JS, Gamsu G, and Webb WR. High-resolution computed tomography of the mammalian lung. Am J Vet Res 53: 1218–1224. 1992.

Tata PR, and Rajagopal J. Plasticity in the lung: making and breaking cell identity. Development 144: 755–766. 2017.

Wansleeben C, Barkauskas CE, Rock JR, and Hogan BLM. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. WIREs Developmental Biology 2: 131–148. 2013.

Baron RM, Choi AJS, Owen CA, and Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. American Journal of Physiology-Lung Cellular and Molecular Physiology 302: L485–L497. 2012.

Rock JR, Randell SH, and Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3: 545–556. 2010.

DeLight N, and Sachs H. Pneumoconiosis. StatPearls Publishing. Treasure Island (FL). 2024.

Pinkerton KE, Green FH, Saiki C, Vallyathan V, Plopper CG, Gopal V, Hung D, Bahne EB, Lin SS, Ménache MG, and Schenker MB. Distribution of particulate matter and tissue remodeling in the human lung. Environmental Health Perspectives 108: 1063–1069. 2000.

Mukhopadhyay S. Non-Neoplastic Pulmonary Pathology: An Algorithmic Approach to Histologic Findings in the Lung. Cambridge University Press. Cambridge. 2016.

Roggli VL, Gibbs AR, Attanoos R, Churg A, Popper H, Cagle P, Corrin B, Franks TJ, Galateau-Salle F, Galvin J, Hasleton PS, Henderson DW, and Honma K. Pathology of asbestosis- An update of the diagnostic criteria: Report of the asbestosis committee of the college of american pathologists and pulmonary pathology society. Arch Pathol Lab Med 134: 462–480. 2010.

Wright JL, and Churg A. Morphology of small-airway lesions in patients with asbestos exposure. Human Pathology 15: 68–74. 1984.

Anna-Luise A. Katzenstein. Diagnostic Atlas of Non-Neoplastic Lung Disease: A Practical Guide for Surgical Pathologists. Demos Medical. 2016.

Honma K, Abraham JL, Chiyotani K, De Vuyst P, Dumortier P, Gibbs AR, Green FHY, Hosoda Y, Iwai K, Williams WJ, Kohyama N, Ostiguy G, Roggli VL, Shida H, Taguchi O, and Vallyathan V. Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation. Hum Pathol 35: 1515–1523. 2004.

Schraufnagel DE. Lung lymphatic anatomy and correlates. Pathophysiology 17: 337–343. 2010.

Sozio F, Rossi A, Weber E, Abraham DJ, Nicholson AG, Wells AU, Renzoni EA, and Sestini P. Morphometric analysis of intralobular, interlobular and pleural lymphatics in normal human lung. J Anat 220: 396–404. 2012.

Akira M. Uncommon pneumoconioses: CT and pathologic findings. Radiology 197: 403–409. 1995.

Kishimoto T, Okamoto K, Koda S, Ono M, Umeda Y, Yamano S, Takeda T, Rai K, Kato K, Nishimura Y, Kobashi Y, and Kawamura T. Respiratory disease in workers handling cross-linked water-soluble acrylic acid polymer. PLOS ONE 18: e0284837. 2023.

Takeda T, Yamano S, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Daghlian G, Hong Y-K, Yoshimatsu Y, Hirashima M, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Dose–response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats. Part Fibre Toxicol 19: 27. 2022.

Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Mechanisms of pulmonary disease in F344 rats after workplace-relevant inhalation exposure to cross-linked water-soluble acrylic acid polymers. Respiratory Research 24: 47. 2023.

Peake JL, and Pinkerton KE. Chapter 3 - Gross and Subgross Anatomy of Lungs, Pleura, Connective Tissue Septa, Distal Airways, and Structural Units. In: . Comparative Biology of the Normal Lung (Second Edition). (Parent RA). Academic Press. San Diego. 21–31. 2015.

Miller WS. The Lung, Second edition. Charles C Thomas Publisher, Springfield, lll. Charles C Thomas Publisher. Springfield, lll. 1947.

Reid L. The Secondary Lobule in the Adult Human Lung, with Special Reference to its Appearance in Bronchograms *. Thorax 13: 110–115. 1958.

Tyler NK, Hyde DM, Hendrickx AG, and Plopper CG. Morphogenesis of the respiratory bronchiole in rhesus monkey lungs. Am J Anat 182: 215–223. 1988.

Goodarzi M, Azizi S, Koupaei MJ, and Moshkelani S. Pathologic findings of anthraco-silicosis in the lungs of one humped camels (Camelus dromedarius) and its role in the occurrence of pneumonia. Kafkas Universitesi Veteriner Fakultesi Dergisi 2013.

Abdel-Salam LR, Hussein FA, Gad MH, Khattal A-RAA, Elhawari WA, Amer AH, and Sheriff DS. LIGHT AND SCANNING MICROSCOPIC STUDIES ON THE TRACHEOBRONCHIAL EPITHELIUM OF THE ONE-HUMPED CAMEL (CAMELUS DROMEDARIUS). Medico Research Chronicles 2: 649–686. 2015.

Robinson N, and Furlow P. 1. Anatomy of the Respiratory System. Equine Respiratory Medicine and Surgery 3–17. 2007.

Takenaka S, Heini A, Ritter B, and Heyder J. The respiratory bronchiole of beagle dogs: structural characteristics. Toxicology Letters 96–97: 301–308. 1998.

Sterner-Kock A, Kock M, Braun R, and Hyde DM. Ozone-induced Epithelial Injury in the Ferret Is Similar to Nonhuman Primates. Am J Respir Crit Care Med 162: 1152–1156. 2000.

Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, Esch E van, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, and Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate (M. fascicularis). Journal of Toxicologic Pathology 34: 1S-182S. 2021.

Falcão B, Vieira A, Souza J, Carreiro A, Araújo D, Soares R, Menezes D, and Medeiros G. Lobation and bronchopulmonary segmentation of Callithrix jacchus (Linnaeus, 1758). Biota Neotropica 18 2018.

Kennedy AR, Desrosiers A, Terzaghi M, and Little JB. Morphometric and histological analysis of the lungs of Syrian golden hamsters. J Anat 125: 527–553. 1978.

Kling MA. A Review of Respiratory System Anatomy, Physiology, and Disease in the Mouse, Rat, Hamster, and Gerbil. Vet Clin North Am Exot Anim Pract 14: 287–337. 2011.

Meeusen E, Snibson K, Hirst S, and Bischof R. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discovery Today: Disease Models 6: 101–106. 2009.

Wu A, Zheng H, Kraenzle J, Biller A, Vanover CD, Proctor M, Sherwood L, Steffen M, Ng C, Mollura DJ, and Jonsson CB. Ferret Thoracic Anatomy by 2-Deoxy-2-(18F)Fluoro-D-Glucose (18F-FDG) Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT) Imaging. ILAR journal / National Research Council, Institute of Laboratory Animal Resources 53: 9. 2012.

Zehtabvar O, Masoudifard M, Rostami A, Akbarein H, Sereshke AHA, Khanamooeiashi M, and Borgheie F. CT anatomy of the lungs, bronchi and trachea in the Mature Guinea pig (cavia porcellus). Vet Med Sci 9: 1179–1193. 2023.

Weibel ER. Morphometry of the Human Lung. Springer. Berlin, Heidelberg. 1963.

Davies A, and Moores C. Structure of the respiratory system, regard to function. The Respiratory System 11–28. 2010.

Jeffery PK, and Li D. Airway mucosa: secretory cells, mucus and mucin genes. European Respiratory Journal 10: 1655–1662. 1997.

Miyata R, and Eeden SF van. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicology and Applied Pharmacology 257: 209–226. 2011.

Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, and Wohrmann T. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol 37: 5S-73S. 2009.

Nagano K, Nishizawa T, Umeda Y, Kasai T, Noguchi T, Gotoh K, Ikawa N, Eitaki Y, Kawasumi Y, Yamauchi T, Arito H, and Fukushima S. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 53: 175–187. 2011.

Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda H, Nishizawa T, and Fukushima S. Two-week Toxicity of Multi-walled Carbon Nanotubes by Whole-body Inhalation Exposure in Rats. J Toxicol Pathol 26: 131–140. 2013.

Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, Nishizawa T, Matsumoto M, and Fukushima S. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology 9: 413–422. 2015.

Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, and Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol 13: 53. 2016.

Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. No evidence for carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. Sci Rep 12: 14969. 2022.

Yamano S, Goto Y, Takeda T, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. Pulmonary dust foci as rat pneumoconiosis lesion induced by titanium dioxide nanoparticles in 13-week inhalation study. Particle and Fibre Toxicology 19: 58. 2022.

Nogueira I, Català M, White AD, Sharpe SA, Bechini J, Prats C, Vilaplana C, and Cardona P-J. Surveillance of Daughter Micronodule Formation Is a Key Factor for Vaccine Evaluation Using Experimental Infection Models of Tuberculosis in Macaques. Pathogens 12: 236. 2023.

Kaneko N, Itoh K, Sugiyama A, and Izumi Y. Microminipig, a non-rodent experimental animal optimized for life science research: preface. J Pharmacol Sci 115: 112–114. 2011.

Kalita A. Histomorphological Study of the Respiratory System of Mizo Local Pig (zo vawk). Asian Journal of Biomedical and Pharmaceutical Sciences 4 2014.

Iwatsuki-Horimoto K, Nakajima N, Shibata M, Takahashi K, Sato Y, Kiso M, Yamayoshi S, Ito M, Enya S, Otake M, Kangawa A, Silva Lopes TJ da, Ito H, Hasegawa H, and Kawaoka Y. The Microminipig as an Animal Model for Influenza A Virus Infection. J Virol 91: e01716-16. 2017.

Ramos L, Obregon-Henao A, Henao-Tamayo M, Bowen R, Lunney JK, and Gonzalez-Juarrero M. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission. Tuberculosis (Edinb) 106: 91–98. 2017.

Skydsgaard M, Dincer Z, Haschek WM, Helke K, Jacob B, Jacobsen B, Jeppesen G, Kato A, Kawaguchi H, McKeag S, Nelson K, Rittinghausen S, Schaudien D, Vemireddi V, and Wojcinski ZW. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Minipig. Toxicol Pathol 49: 110–228. 2021.

Chen P, Hou J, Ding D, Hua X, Yang Z, and Cui L. Lipopolysaccharide-induced inflammation of bronchi and emphysematous changes of pulmonary parenchyma in miniature pigs (Sus scrofa domestica). Lab Anim (NY) 42: 86–91. 2013.

Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB, Zabner J, and Welsh MJ. Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth. Science Translational Medicine 2: 29ra31-29ra31. 2010.

Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, and Prather RS. Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118: 1571–1577. 2008.

Semaniakou A, Croll RP, and Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front. Pharmacol. 9 2019.

Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, and Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev 26: 38–49. 2015.

He W, Zhang W, Cheng C, Li J, Wu X, Li M, Chen Z, and Wang W. The distributive and structural characteristics of bronchus-associated lymphoid tissue (BALT) in Bactrian camels (Camelus bactrianus). PeerJ 7: e6571. 2019.

Piscitelli MA, Raverty SA, Lillie MA, and Shadwick RE. A review of cetacean lung morphology and mechanics. Journal of Morphology 274: 1425–1440. 2013.

Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J, and Steering Group of the RETHINK Project. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62: 196–220. 2010.

Koch W, Windt H, Walles M, Borlak J, and Clausing P. Inhalation studies with the Göttingen minipig. Inhal Toxicol 13: 249–259. 2001.

Windt H, Kock H, Runge F, Hübel U, and Koch W. Particle deposition in the lung of the Göttingen minipig. Inhalation Toxicology 2010.

Hewitt RJ, and Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21: 347–362. 2021.

Luecken MD, Zaragosi L-E, Madissoon E, Sikkema L, Firsova AB, De Domenico E, Kümmerle L, Saglam A, Berg M, Gay ACA, Schniering J, Mayr CH, Abalo XM, Larsson L, Sountoulidis A, Teichmann SA, Eunen K van, Koppelman GH, Saeb-Parsy K, Leroy S, Powell P, Sarkans U, Timens W, Lundeberg J, Berge M van den, Nilsson M, Horváth P, Denning J, Papatheodorou I, Schultze JL, Schiller HB, Barbry P, Petoukhov I, Misharin AV, Adcock IM, Papen M von, Theis FJ, Samakovlis C, Meyer KB, and Nawijn MC. The discovAIR project: a roadmap towards the Human Lung Cell Atlas. Eur Respir J 60: 2102057. 2022.

Sikkema L, Ramírez-Suástegui C, Strobl DC, Gillett TE, Zappia L, Madissoon E, Markov NS, Zaragosi L-E, Ji Y, Ansari M, Arguel M-J, Apperloo L, Banchero M, Bécavin C, Berg M, Chichelnitskiy E, Chung M, Collin A, Gay ACA, Gote-Schniering J, Hooshiar Kashani B, Inecik K, Jain M, Kapellos TS, Kole TM, Leroy S, Mayr CH, Oliver AJ, Papen M von, Peter L, Taylor CJ, Walzthoeni T, Xu C, Bui LT, De Donno C, Dony L, Faiz A, Guo M, Gutierrez AJ, Heumos L, Huang N, Ibarra IL, Jackson ND, Kadur Lakshminarasimha Murthy P, Lotfollahi M, Tabib T, Talavera-López C, Travaglini KJ, Wilbrey-Clark A, Worlock KB, Yoshida M, Berge M van den, Bossé Y, Desai TJ, Eickelberg O, Kaminski N, Krasnow MA, Lafyatis R, Nikolic MZ, Powell JE, Rajagopal J, Rojas M, Rozenblatt-Rosen O, Seibold MA, Sheppard D, Shepherd DP, Sin DD, Timens W, Tsankov AM, Whitsett J, Xu Y, Banovich NE, Barbry P, Duong TE, Falk CS, Meyer KB, Kropski JA, Pe’er D, Schiller HB, Tata PR, Schultze JL, Teichmann SA, Misharin AV, Nawijn MC, Luecken MD, and Theis FJ. An integrated cell atlas of the lung in health and disease. Nat Med 1–15. 2023.

Tsukui T, Wolters PJ, and Sheppard D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631: 627–634. 2024.

Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, and Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 629: 869–877. 2024.

Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J, Brumwell AN, Katzen J, Slovik KJ, Babu A, Zhou S, Kremp MM, McCauley KB, Li S, Planer JD, Hussain SS, Liu X, Windmueller R, Ying Y, Stewart KM, Oyster M, Christie JD, Diamond JM, Engelhardt JF, Cantu E, Rowe SM, Kotton DN, Chapman HA, and Morrisey EE. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604: 120–126. 2022.

Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, Spence JR, Engelhardt JF, Boucher RC, Rock JR, Randell SH, and Tata PR. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604: 111–119. 2022.

公開済


投稿日時: 2024-08-20 14:00:15 UTC

公開日時: 2024-08-22 08:25:29 UTC
研究分野
生物学・生命科学・基礎医学