Multi-trajectory Dynamic Mode Decomposition
DOI:
https://doi.org/10.51094/jxiv.602キーワード:
Dynamic Mode Decomposition、 Multi-trajectory Modeling、 Time-series Data Analysis抄録
We propose a new interpretation of the parameter optimization in dynamic mode decomposition (DMD), and show a rigorous application in multi-trajectory modeling. The proposed method, multi-trajectory DMD (MTDMD) is a numerical method using which we can model a dynamical system using multiple trajectories, or multiple sets of consecutive snapshots. Here, a trajectory corresponds to an experiment, so the proposed method accepts multiple experimental results. This is in a clear contrast to the existing DMD-based methods that accept only one set of consecutive snapshots.
Abovementioned multi-trajectory modeling is quite useful in applications, because we can suppress the undesirable effects from the observation noises and employ multiple experiments with different
experimental conditions to model a complex system.
The proposed method is quite flexible, and we suggest that we can also implement L2 regularization and element-wise equality constraints on the model parameters. We expect that the proposed method is useful to model large complex systems in the industrial applications.
利益相反に関する開示
We have no conflict of interest.ダウンロード *前日までの集計結果を表示します
引用文献
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of fluid mechanics 656, 5 (2010).
J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode decomposition: Theory and applications, Journal of Computational Dynamics 1, 391 (2014).
P. J. Schmid, Dynamic mode decomposition and its variants, Annual Review of Fluid Mechanics 54, 225 (2022).
I. Mezic, Analysis of fluid flows via spectral properties of the koopman operator, Annual Review of Fluid Mechanics 45, 357 (2013).
J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control, SIAM Journal on Applied Dynamical Systems 15, 142 (2016).
T. Askham and J. N. Kutz, Variable projection methods for an optimized dynamic mode decomposition, SIAM Journal on Applied Dynamical Systems 17, 380 (2018).
D. Sashidhar and J. N. Kutz, Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210199 (2022).
E. Rodrigues, B. Zadrozny, C. Watson, and D. Gold, Decadal forecasts with resdmd: a residual dmd neural network, arXiv preprint arXiv:2106.11111 (2021).
R. Anzaki, K. Sano, T. Tsutsui, M. Kazui, and T. Matsuzawa, Dynamic mode decomposition with memory, Physical Review E 108, 034216 (2023).
I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynamics 41, 309 (2005).
C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of nonlinear flows, Journal of fluid mechanics 641, 115 (2009).
S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, Modern Koopman theory for dynamical systems, arXiv
preprint arXiv:2102.12086 (2021).
A. Sano and H. Tsuji, Optimal sampling rate for System identification based on decimation and interpolation, IFAC Proceedings Volumes 26, 297 (1993).
X. Xu, Generalization of the Sherman–Morrison–Woodbury formula involving the Schur complement, Applied Mathematics and Computation 309, 183 (2017).
A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J. Goldschmidt, J. Callaham, C. B. Delahunt, Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz, and S. L. Brunton, Pysindy: A comprehensive python package for robust sparse system identification, Journal
of Open Source Software 7, 3994 (2022).
S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the national academy of sciences 113, 3932 (2016).
Intel, the Intel logo, and Intel Core are trademarks of Intel Corporation or its subsidiaries.
ダウンロード
公開済
投稿日時: 2024-01-19 05:53:37 UTC
公開日時: 2024-01-23 04:16:37 UTC — 2024-10-07 07:43:17 UTCに更新
バージョン
- 2024-10-07 07:43:17 UTC(2)
- 2024-01-23 04:16:37 UTC(1)
改版理由
We have updatetd the theoretical part and removed numerical experiments.ライセンス
Copyright(c)2024
Anzaki, Ryoji
Yamada, Shota
Tsutsui, Takuro
Matsuzawa, Takahito
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。