プレプリント / バージョン2

Multi-trajectory Dynamic Mode Decomposition

##article.authors##

  • Anzaki, Ryoji Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd. https://orcid.org/0000-0002-6395-8799
  • Yamada, Shota Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.
  • Tsutsui, Takuro Advanced Engineering 2nd Department, Digital Design Center, Tokyo Electron Ltd.
  • Matsuzawa, Takahito Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.

DOI:

https://doi.org/10.51094/jxiv.602

キーワード:

Dynamic Mode Decomposition、 Multi-trajectory Modeling、 Time-series Data Analysis

抄録

We propose a new interpretation of the parameter optimization in dynamic mode decomposition (DMD), and show a rigorous application in multi-trajectory modeling. The proposed method, multi-trajectory DMD (MTDMD) is a numerical method using which we can model a dynamical system using multiple trajectories, or multiple sets of consecutive snapshots. Here, a trajectory corresponds to an experiment, so the proposed method accepts multiple experimental results. This is in a clear contrast to the existing DMD-based methods that accept only one set of consecutive snapshots.
Abovementioned multi-trajectory modeling is quite useful in applications, because we can suppress the undesirable effects from the observation noises and employ multiple experiments with different
experimental conditions to model a complex system.
The proposed method is quite flexible, and we suggest that we can also implement L2 regularization and element-wise equality constraints on the model parameters. We expect that the proposed method is useful to model large complex systems in the industrial applications.

利益相反に関する開示

We have no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

著者の経歴

Anzaki, Ryoji、Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.

Ryoji Anzaki、Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.

2016-2020: Graduate School of Engineering, The University of Tokyo (PhD)

2020-2021: Project Researcher, Earthquake Research Institute, The University of Tokyo

2021-Current: Scientist, Tokyo Electron Ltd.

引用文献

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of fluid mechanics 656, 5 (2010).

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode decomposition: Theory and applications, Journal of Computational Dynamics 1, 391 (2014).

P. J. Schmid, Dynamic mode decomposition and its variants, Annual Review of Fluid Mechanics 54, 225 (2022).

I. Mezic, Analysis of fluid flows via spectral properties of the koopman operator, Annual Review of Fluid Mechanics 45, 357 (2013).

J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control, SIAM Journal on Applied Dynamical Systems 15, 142 (2016).

T. Askham and J. N. Kutz, Variable projection methods for an optimized dynamic mode decomposition, SIAM Journal on Applied Dynamical Systems 17, 380 (2018).

D. Sashidhar and J. N. Kutz, Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210199 (2022).

E. Rodrigues, B. Zadrozny, C. Watson, and D. Gold, Decadal forecasts with resdmd: a residual dmd neural network, arXiv preprint arXiv:2106.11111 (2021).

R. Anzaki, K. Sano, T. Tsutsui, M. Kazui, and T. Matsuzawa, Dynamic mode decomposition with memory, Physical Review E 108, 034216 (2023).

I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynamics 41, 309 (2005).

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of nonlinear flows, Journal of fluid mechanics 641, 115 (2009).

S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, Modern Koopman theory for dynamical systems, arXiv

preprint arXiv:2102.12086 (2021).

A. Sano and H. Tsuji, Optimal sampling rate for System identification based on decimation and interpolation, IFAC Proceedings Volumes 26, 297 (1993).

X. Xu, Generalization of the Sherman–Morrison–Woodbury formula involving the Schur complement, Applied Mathematics and Computation 309, 183 (2017).

A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J. Goldschmidt, J. Callaham, C. B. Delahunt, Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz, and S. L. Brunton, Pysindy: A comprehensive python package for robust sparse system identification, Journal

of Open Source Software 7, 3994 (2022).

S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the national academy of sciences 113, 3932 (2016).

Intel, the Intel logo, and Intel Core are trademarks of Intel Corporation or its subsidiaries.

ダウンロード

公開済


投稿日時: 2024-01-19 05:53:37 UTC

公開日時: 2024-01-23 04:16:37 UTC — 2024-10-07 07:43:17 UTCに更新

バージョン

改版理由

We have updatetd the theoretical part and removed numerical experiments.
研究分野
情報科学