プレプリント / バージョン1

Single-cell mean rank gene set scoring method for between-dataset comparison of scRNA-seq data

##article.authors##

  • Dazhou Li Department of Pathology, First Affiliated Hospital of Guangzhou Medical University
  • Meng, Guohao Department of Pathophysiology, Shanghai Jiaotong University School of Medicine
  • Jieyu Wu Department of Pathology, First Affiliated Hospital of Guangzhou Medical University
  • Guihui Tong Department of Pathology, First Affiliated Hospital of Guangzhou Medical University

DOI:

https://doi.org/10.51094/jxiv.580

キーワード:

single-cell analysis、 RNA sequencing、 gene set analysis、 glioblastoma、 NF-κB pathway

抄録

The surge in single-cell RNA sequencing (scRNA-seq) data offers a unique chance for researchers to understand functional changes in biological processes and diseases through gene set scoring across diverse datasets. Despite this, current methods for comparing scRNA-seq data at the signaling pathway level across datasets remain untested. To bridge this gap, we introduce the single-cell mean rank gene set scoring (scMRGSS) method, which assesses gene set activity between different scRNA-seq datasets. Leveraging gene expression ranks within each dataset, scMRGSS calculates mean rank scores for gene sets, enabling the comparison of their relative enrichment or depletion across datasets. Demonstrating its efficacy through simulated and real datasets, scMRGSS proves to be a simple yet informative tool for comparing gene set activity between cell types across diverse datasets. Its robustness against sequencing depth and dropout rate variations underscores its value for integrative scRNA-seq data analysis. Applying the method, we uncover that abnormal activity in oxidative phosphorylation and NF-κB signaling pathways in glioblastoma cancer cells may not solely stem from neurodevelopmental programs. Notably, the highest activity of these pathways is observed in the mesenchymal cancer cell type, emphasizing the need to target specific cell types in glioblastoma drug development.

利益相反に関する開示

The authors declare no competing in interests.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

THE TABULA SAPIENS CONSORTIUM. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science. 2022 May 13;376(6594):eabl4896.

Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022 May 13;376(6594):eabl5197.

Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science. 2022 May 13;376(6594):eabl4290.

Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature. 2021 Oct;598(7879):103–10.

Jardine L, Webb S, Goh I, Quiroga Londoño M, Reynolds G, Mather M, et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature. 2021 Oct;598(7880):327–31.

Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert JP. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018 Jan 18;9(1):284.

Franchini M, Pellecchia S, Viscido G, Gambardella G. Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data. NAR Genom Bioinform. 2023 Mar;5(1):lqad024.

Pont F, Tosolini M, Fournié JJ. Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 2019 Dec 2;47(21):e133.

Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017 Nov;14(11):1083–6.

Frost HR. Variance-adjusted Mahalanobis (VAM): a fast and accurate method for cell-specific gene set scoring. Nucleic Acids Res. 2020 Sep 18;48(16):e94.

Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol. 2018 Jan;36(1):70–80.

DeTomaso D, Jones MG, Subramaniam M, Ashuach T, Ye CJ, Yosef N. Functional interpretation of single cell similarity maps. Nat Commun. 2019 Sep 26;10(1):4376.

Noureen N, Ye Z, Chen Y, Wang X, Zheng S. Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell RNA sequencing data. Elife. 2022 Feb 25;11:e71994.

Yee TW. The VGAM Package for Categorical Data Analysis. Journal of Statistical Software. 2010 Jan 5;32:1–34.

Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017 Sep 12;18(1):174.

Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol. 2019 Jun;37(6):685–91.

Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 2020 Jul 8;11(1):3406.

Trevino AE, Müller F, Andersen J, Sundaram L, Kathiria A, Shcherbina A, et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell. 2021 Sep 16;184(19):5053-5069.e23.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011 Jun 15;27(12):1739–40.

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021 Jun 24;184(13):3573-3587.e29.

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019 Dec 23;20(1):296.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008 Oct;2008(10):P10008.

Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019 Feb;20(2):163–72.

Danisch S, Krumbiegel J. Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software. 2021 Sep 1;6(65):3349.

Gao CH, Yu G, Cai P. ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram. Front Genet. 2021;12:706907.

Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10(3):e0118432.

Garofano L, Migliozzi S, Oh YT, D’Angelo F, Najac RD, Ko A, et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer. 2021 Feb;2(2):141–56.

Ji J, Ding K, Luo T, Zhang X, Chen A, Zhang D, et al. TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ. 2021 Jan;28(1):367–81.

Xiang J, Alafate W, Wu W, Wang Y, Li X, Xie W, et al. NEK2 enhances malignancies of glioblastoma via NIK/NF-κB pathway. Cell Death Dis. 2022 Jan 14;13(1):58.

Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell perturbation responses. Nat Methods. 2019 Aug;16(8):715–21.

Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample scoring of molecular phenotypes. BMC Bioinformatics. 2018 Nov 6;19(1):404.

Bonnay F, Veloso A, Steinmann V, Köcher T, Abdusselamoglu MD, Bajaj S, et al. Oxidative Metabolism Drives Immortalization of Neural Stem Cells during Tumorigenesis. Cell. 2020 Sep 17;182(6):1490-1507.e19.

Shi Y, Lim SK, Liang Q, Iyer SV, Wang HY, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019 Mar;567(7748):341–6.

Soubannier V, Stifani S. NF-κB Signalling in Glioblastoma. Biomedicines. 2017 Jun 9;5(2):29.

公開済


投稿日時: 2023-12-21 21:05:12 UTC

公開日時: 2023-12-26 01:05:53 UTC
研究分野
生物学・生命科学・基礎医学