プレプリント / バージョン1

Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia

Effects of high-glucose diet on fruit flies


  • Maiko Abe Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba
  • Takumi Kamiyama Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
  • Yasushi Izumi Division of Cell Structure, National Institute for Physiological Sciences
  • Qingyin Qian Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba
  • Yuma Yoshihashi Sugadaira Research Station, Mountain Science Center, University of Tsukuba
  • Yousuke Degawa Sugadaira Research Station, Mountain Science Center, University of Tsukuba
  • Kaori Watanabe Graduate School of Biostudies, Kyoto University
  • Yukako Hattori Graduate School of Biostudies, Kyoto University
  • Tadashi Uemura Graduate School of Biostudies, Kyoto University
  • Niwa, Ryusuke Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba https://orcid.org/0000-0002-1716-455X




Drosophila、 glucose、 gut epithelium、 immune system、 lifespan、 scopoletin


Organisms can generally be divided into two groups: generalists that consume various types of food, and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only the limited nutritional conditions present in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia, was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which are associated with abnormal indigestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the guts of D. sechellia fed a high-glucose diet compared to those fed a control diet. Consistent with this difference in gene expression, the abundance of the gut microbiota was altered in D. sechellia under high-glucose diet conditions. Additionally, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to abnormal growth of gut bacteria, the disorganization of the gut epithelial structure, and a shortened lifespan.

ダウンロード *前日までの集計結果を表示します



Aghajanian, P., Takashima, S., Paul, M., Younossi-Hartenstein, A., & Hartenstein, V. (2016). Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation. Dev. Biol. 420, 43–59.

Anholt, R.R.H. (2020). Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 23, 100799.

Auer, T.O., Shahandeh, M.P., & Benton, R. (2021). Drosophila sechellia A Genetic Model for Behavioral Evolution and Neuroecology. Annu. Rev. Genet. 55, 527–554.

Bailey, A.P., Koster, G., Guillermier, C., Hirst, E.M.A., MacRae, J.I., Lechene, C.P., Postle, A.D., & Gould, A.P. (2015). Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell 163, 340–353.

Behmer, S.T. (2009). Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187.

Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., Capri, M., Brigidi, P., & Candela, M. (2016). Gut Microbiota and Extreme Longevity. Curr. Biol. 26, 1480–1485.

Biteau, B., Karpac, J., Supoyo, S., DeGennaro, M., Lehmann, R., & Jasper, H. (2010). Lifespan extension by preserving proliferative homeostasis in Drosophila. PLOS Genet. 6, e1001159.

Boehme, M., Guzzetta, K.E., Bastiaanssen, T.F.S., et al. (2021). Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676.

Chng, W. bin A., Sleiman, M.S.B., Schüpfer, F., & Lemaitre, B. (2014). Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Rep. 9, 336–348.

Chng, W. bin A., Hietakangas, V., & Lemaitre, B. (2017). Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster. Trends Endocrinol. Metab. 28, 131–142.

Chopra, I., & Roberts, M. (2001). Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 65, 232–260.

Claesson, M.J., Jeffery, I.B., Conde, S., et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184.

Clark, R.I., Salazar, A., Yamada, R., Fitz-Gibbon, S., Morselli, M., Alcaraz, J., Rana, A., Rera, M., Pellegrini, M., Ja, W.W., & Walker, D.W. (2015). Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. Cell Rep. 12, 1656–1667.

van Dam, E., van Leeuwen, L.A.G., dos Santos, E., et al. (2020). Sugar-Induced Obesity and Insulin Resistance Are Uncoupled from Shortened Survival in Drosophila. Cell Metab. 31, 710-725.e7.

Ghosh, A.C., & O’Connor, M.B. (2014). Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 111, 5729–5734.

Guo, L., Karpac, J., Tran, S.L., & Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156, 109–122.

Heys, C., Fisher, A.M., Dewhurst, A.D., Lewis, Z., & Lize, A. (2019). A potential role for the gut microbiota in the specialisation of Drosophila sechellia to its toxic host noni (Morinda citrifolia). BioRxiv , doi: 10.1101/526517.

Heys, C., Fisher, A.M., Dewhurst, A.D., Lewis, Z., & Lizé, A. (2021). Exposure to foreign gut microbiota can facilitate rapid dietary shifts. Sci. Reports 2021 111 11, 16791.

Higa, I., & Fuyama, Y. (1993). Genetics of food preference in Drosophila sechellia - I. Responses to food attractants. Genetica 88, 129–136.

Hofbauer, H.F., Heier, C., Saji, A.K. Sen, & Kühnlein, R.P. (2021). Lipidome remodeling in aging normal and genetically obese Drosophila males. Insect Biochem. Mol. Biol. 133, 103498.

Izumi, Y., Motoishi, M., Furuse, K., & Furuse, M. (2016). A tetraspanin regulates septate junction formation in Drosophila midgut. J. Cell Sci. 129, 1155–1164.

Jones, C.D. (2001). The genetic basis of larval resistance to a host plant toxin in Drosophila sechellia. Genet. Res. 78, 225–233.

Kamareddine, L., Robins, W.P., Berkey, C.D., Mekalanos, J.J., & Watnick Correspondence, P.I. (2018). The Drosophila Immune Deficiency Pathway Modulates Enteroendocrine Function and Host Metabolism. Cell Metab. 28, 449-462.e5.

Keebaugh, E.S., Yamada, R., Obadia, B., Ludington, W.B., & Ja, W.W. (2018). Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. IScience 4, 247–259.

Kim, D., Paggi, J.M., Park, C., Bennett, C., & Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019 378 37, 907–915.

Lanno, S.M., Gregory, S.M., Shimshak, S.J., et al. (2017). Transcriptomic Analysis of Octanoic Acid Response in Drosophila sechellia Using RNA-Sequencing. G3 7, 3867–3873.

Larkin, A., Marygold, S.J., Antonazzo, G., et al. (2021). FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 49, D899–D907.

Leeming, E.R., Johnson, A.J., Spector, T.D., & Roy, C.I.L. (2019). Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 11, 2862.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079.

Li, H., Qi, Y., & Jasper, H. (2016). Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host Microbe 19, 240–253.

Li, S., Jovelin, R., Yoshiga, T., Tanaka, R., & Cutter, A.D. (2014). Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proc. R. Soc. B Biol. Sci. 281, 20132858.

Liao, S., Amcoff, M., & Nässel, D.R. (2021). Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect Biochem. Mol. Biol. 133, 103495.

Loch, G., Zinke, I., Mori, T., Carrera, P., Schroer, J., Takeyama, H., & Hoch, M. (2017). Antimicrobial peptides extend lifespan in Drosophila. PLoS One 12, e0176689.

López, J.M.A., Lanno, S.M., Auerbach, J.M., Moskowitz, E.C., Sligar, L.A., Wittkopp, P.J., & Coolon, J.D. (2017). Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region. Mol. Ecol. 26, 1148–1160.

Loxdale, H.D., Lushai, G., & Harvey, J.A. (2011). The evolutionary improbability of “generalism” in nature, with special reference to insects. Biol. J. Linn. Soc. 103, 1–18.

Mackowiak, P.A. (2013). Recycling Metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Front. Public Heal. 1, 52.

Markow, T.A. (2015). The Natural History of Model Organisms: The secret lives of Drosophila flies. Elife 4, e06793.

Markow, T.A., & O’Grady, P. (2008). Reproductive ecology of Drosophila. Funct. Ecol. 22, 747–759.

Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia. PLOS Biol. 5, e118.

Mattila, J., & Hietakangas, V. (2017). Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 207, 1231–1253.

Mattila, J., Havula, E., Ripatti, S., Sandmann, T., Hietakangas, V., Suominen, E., Teesalu, M., Surakka, I., Hynynen, R., Kilpinen, H., Vä, J., Nä Nen, ¨, Hovatta, I., & Kä Kelä, R. (2015). Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe Accession Numbers GSE70980 Mattila et al Article Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe. Cell Rep. 13, 350–364.

May, C.E., Vaziri, A., Lin, Y.Q., Grushko, O., Khabiri, M., Wang, Q.P., Holme, K.J., Pletcher, S.D., Freddolino, P.L., Neely, G.G., & Dus, M. (2019). High Dietary Sugar Reshapes Sweet Taste to Promote Feeding Behavior in Drosophila melanogaster. Cell Rep. 27, 1675-1685.e7.

McCarthy, D.J., Chen, Y., & Smyth, G.K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297.

Melvin, R.G., Lamichane, N., Havula, E., Kokki, K., Soeder, C., Jones, C.D., & Hietakangas, V. (2018). Natural variation in sugar tolerance associates with changes in signaling and mitochondrial ribosome biogenesis. Elife 7, e40841.

Monheit, J.E., Cowan, D.F., & Moore, D.G. (1984). Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med 108, 616–618.

Musselman, L.P., & Kühnlein, R.P. (2018). Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, jeb163881.

Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani, S.S., Cagan, R.L., & Baranski, T.J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849.

Na, J., Musselman, L.P., Pendse, J., Baranski, T.J., Bodmer, R., Ocorr, K., & Cagan, R. (2013). A Drosophila model of high sugar diet-induced cardiomyopathy. PLOS Genet. 9, e1003175.

Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246.

Obata, F., Fons, C.O., & Gould, A.P. (2018). Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat. Commun. 9, 975.

Pais, I.S., Valente, R.S., Sporniak, M., & Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLOS Biol. 16, e2005710.

Pereira, M.T., Malik, M., Nostro, J.A., Mahler, G.J., & Musselman, L.P. (2018). Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis. Model. Mech. 11, dmm034520.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., & Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016 119 11, 1650–1667.

Poissonnier, L.A., Arganda, S., Simpson, S.J., Dussutour, A., & Buhl, J. (2018). Nutrition in extreme food specialists: An illustration using termites. Funct. Ecol. 32, 2531–2541.

Prieto-Godino, L.L., Rytz, R., Cruchet, S., Bargeton, B., Abuin, L., Silbering, A.F., Ruta, V., Dal Peraro, M., & Benton, R. (2017). Evolution of Acid-Sensing Olfactory Circuits in Drosophilids. Neuron 93, 661-676.e6.

Raubenheimer, D., & Simpson, S.J. (2003). Nutrient balancing in grasshoppers: Behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 206, 1669–1681.

Rera, M., Clark, R.I., & Walker, D.W. (2012). Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 109, 21528–21533.

Robinson, M.D., McCarthy, D.J., & Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Saisawang, C., & Ketterman, A.J. (2014). Micro-plasticity of genomes as illustrated by the evolution of glutathione transferases in 12 Drosophila species. PLoS One 9, e109518.

Salazar-Jaramillo, L., & Wertheim, B. (2021). Does Drosophila sechellia escape parasitoid attack by feeding on a toxic resource? PeerJ 9, e10528.

Sato, T. (1968). A modified method for lead staining of thin sections. J. Electron Microsc. 17, 158–159.

Schröter, R.H., Buttgereit, D., Beck, L., Holz, A., & Renkawitz-Pohl, R. (2006). Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila. Differentiation 74, 608–621.

Seo, Y.S., Lee, H. Bin, Kim, Y., & Park, H.Y. (2020). Dietary carbohydrate constituents related to gut dysbiosis and health. Microorganisms 8, 427.

Slatyer, R.A., Hirst, M., & Sexton, J.P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecol. Lett. 16, 1104–1114.

Tasfiyati, A.N., Antika, L.D., Dewi, R.T., Septama, A.W., Sabarudin, A., & Ernawati, T. (2022). An experimental design approach for the optimization of scopoletin extraction from Morinda citrifolia L. using accelerated solvent extraction. Talanta 238, 123010.

Tsukada, K., Shinki, S., Kaneko, A., et al. (2020). Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nat. Commun. 2020 111 11, 1830.

Veenstra, J.A., Agricola, H.J., & Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516.

Watada, M., Hayashi, Y., Watanabe, K., Mizutani, S., Mure, A., Hattori, Y., & Uemura, T. (2020). Divergence of Drosophila species: Longevity and reproduction under different nutrient balances. Genes to Cells 25, 626–636.

Watanabe, K., Kanaoka, Y., Mizutani, S., Uchiyama, H., Yajima, S., Watada, M., Uemura, T., & Hattori, Y. (2019). Interspecies Comparative Analyses Reveal Distinct Carbohydrate-Responsive Systems among Drosophila Species. Cell Rep. 28, 2594-2607.e7.

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., & Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523.



投稿日時: 2022-04-22 03:31:08 UTC

公開日時: 2022-04-22 09:18:14 UTC