プレプリント / バージョン1

Regulation of macrophages in allergy by non-coding RNAs

##article.authors##

  • Ishibashi, Osamu Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University https://orcid.org/0000-0003-4698-460X
  • Stefan Muljo Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
  • Zohirul Islam Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)

DOI:

https://doi.org/10.51094/jxiv.499

キーワード:

noncoding RNA、 allergy、 macrophage、 macrophage polarization

抄録

Allergies are an immune reaction that is triggered by various substances known as allergens, which are represented by food and environmental substances such as plant pollen, fungal spores, and the feces and debris of mites and insects. Macrophages are immune cells with phagocytic abilities that process exogenous and endogenous antigens. The dysregulation of macrophage function leads to excessive inflammation, which includes allergic reactions. Thus, it is important to better understand how macrophages are regulated in the pathogenesis of allergies. Emerging evidence has highlighted the role of noncoding RNAs (ncRNAs) in macrophage polarization, which is involved in the pathogenesis of various immune-mediated diseases, including allergies. This review summarizes the current knowledge of ncRNA-regulated macrophage polarization that is related to allergies by focusing on three major ncRNA types: microRNAs, long ncRNAs, and circular RNAs. Furthermore, we discuss the potential therapeutic applications of targeting ncRNAs for allergy treatment.

利益相反に関する開示

Nothing to be declared

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Lee, T. Allergy: The Unmet Need. Clin. Med. (London) 2003, 3(4), 303–305.

Bali pulendran and David Artis. New Paradigms in Type 2 Immunity. Science. 2012, 337(6093) 431-435.

Meltzer, E.; Blaiss, M.; Naclerio, R. Burden of Allergic Rhinitis: Allergies in America, Latin America, and Asia-pacific Adult Surveys. Allergy Asthma Proc. 2012, 33, S113–S141.

Pawankar, R; Canonica, G.W.; Holgate, S.T.; Lockey, R.F. World Health Organization. White Book on Allergy 2011-2012 Executive Summary.

King, T.P.; Norman, P.S. Isolation Studies of Allergens from Ragweed Pollen. Biochemistry. 1962, 1, 709-720.

Sudharson, S.; Kalic, T.; Hafner, C.; Breiteneder, H. Newly Defined Allergens in the WHO/IUIS Allergen Nomenclature Database During 01/2019-03/2021. Allergy. 2021, 76(11), 3359–3373.

Ishibashi, O.; Sakuragi, K.; Fukutomi, Y.; Kawakami, Y.; Kamata, Y.; Sakurai, M.; Nakayama, S.; Uchiyama, H.; Kobayashi, H.; Kojima, H. Lip b 1 Is a Novel Allergenic Protein Isolated from the Booklouse, Liposcelis bostrychophila. Allergy. 2017, 72, 918-926.

Fukutomi, Y.; Kawakami, Y.; Taniguchi, M.; Saito, A.; Fukuda, A.; Yasueda, H.; Nakazawa, T.; Hasegawa, M.; Nakamura, H.; Akiyama, K. Allergenicity and Cross-reactivity of Booklice (Liposcelis bostrichophila): A Common Household Insect Pest in Japan. Int. Arch. Allergy Immunol. 2012, 157(4), 339-348.

Babaie, D.; Vadas, P. Anaphylaxis to Oatmeal and Psocid Crisps. Iran J. Allergy Asthma Immunol. 2020, 19(2), 200–202.

Eswaran U, G.M.; Karunanithi, S.; Gupta, R.; Rout, S.; Srivastav, P. Edible Insects as Emerging Food Products-processing and Product Development Perspective. J. Food Sci. Technol. 2023, 60(8), 2105–2120.

Saradna, A.; Do, D.; Kumar, S.; Fu, Q.; Gao, P. Macrophage Polarization and Allergic Asthma. Transl. Res. 2018, 191, 1–14.

Balhara, J.; Gounni, A. The Alveolar Macrophages in Asthma: A Double-edged Sword. Mucosal Immunol. 2012, 5(6), 605–609.

Abdelaziz, M.H.; Abdelwahab, S.F.; Wan, J. Alternatively Activated Macrophages; a Double-edged Sword in Allergic Asthma. J. Transl. Med. 2020, 18(1), 58.

Viktoriia K, Polina V, Andrey E, Timur F, Gennady S. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol. 2023, 122, 110583.

Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014, 28, 5, 614.

Lawrence, T.; Natoli, G. Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nat Rev Immunol. 2011, 11(11), 750–761.

Islam, Z.; Inui, T.; Ishibashi, O. Gpr137b Is an Orphan G-protein-coupled Receptor Associated with M2 Macrophage Polarization. Biochem. Biophys. Res. Commun. 2019, 509(3), 657–663.

Mosser, D.; Edwards, J. Exploring the Full Spectrum of Macrophage Activation. Nat Rev Immunol. 2008, 8(12), 958–969.

Murray, P.J. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41(1), 14–20.

Martinez, F.; Gordon, S. The M1 and M2 Paradigm of Macrophage Activation: Time for Reassessment. F1000Prime Rep. 2014, 6, 13.

Zhu, L.; Zhao, Q.; Yang, T.; Ding, W.; Zhao, Y. Cellular Metabolism and Macrophage Functional Polarization. Int. Rev. Immunol. 2015, 34(1), 82-100.

Mackaness, G. Cellular Resistance to Infection. J Exp Med. 1962, 116(3), 381–406.

Nathan, C.; Murray, H.; Wiebe, M.; Rubin, B. Identification of Interferon-gamma as the Lymphokine That Activates Human Macrophage Oxidative Metabolism and Antimicrobial Activity. J. Exp. Med. 1983, 158(3), 670–689.

Boutilier, A.; Elsawa, S. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22(13), 6995.

Funes, S.C.; Ríos, M.; Escobar-Vera, J.; Kalergis, A.M. Implications of Macrophage Polarization in Autoimmunity. Immunology. 2018, 154(2), 186-195.

Bertani, F.; Mozetic, P.; Fioramonti, M.; Iuliani, M.; Ribelli, G.; Pantano, F.; Santini, D.; Tonini, G.; Trombetta, M.; Businaro, L. Classification of M1/m2-polarized Human Macrophages by Label-free Hyperspectral Reflectance Confocal Microscopy and Multivariate Analysis. Sci. Rep. 2017, 7(1), 8965.

Hilhorst, M.; Shirai, T.; Berry, G.; Goronzy, J.; Weyand, C. T Cell-macrophage Interactions and Granuloma Formation in Vasculitis. Front. Immunol. 2014, 5, 432.

Laskin, D.; Sunil, V.; Gardner, C.; Laskin, J. Macrophages and Tissue Injury: Agents of Defense or Destruction? Annu Rev Pharmacol Toxicol. 2011, 51, 267–288.

Kim, S.; Nair, M. Macrophages in Wound Healing: Activation and Plasticity. Immunol Cell Biol. 2019, 97(3), 258–267.

Di Benedetto, P.; Ruscitti, P.; Vadasz, Z.; Toubi, E.; Giacomelli, R. Macrophages with Regulatory Functions, a Possible New Therapeutic Perspective in Autoimmune Diseases. Autoimmun. Rev. 2019, 18(10), 102369.

Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015,184, 436-445.

Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012, 122(3), 787–95.

Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019, 106(2) 345-358.

Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012, 189(7), 3508–20.

Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4alpha) signaling. Inflammation. 2013, 36(4), 921-31.

Lee, J.; Chun, W.; Lee, H.; Min, J.; Kim, S.; Seo, J.; Ahn, K.; Oh, S. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells. 2021, 10(4), 897.

Cai, Y.; Sugimoto, C.; Arainga, M.; Alvarez, X.; Didier, E.; Kuroda, M. In Vivo Characterization of Alveolar and Interstitial Lung Macrophages in Rhesus Macaques: Implications for Understanding Lung Disease in Humans. J.Immunol. 2014, 192(6), 2821-2829.

Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014, 5, 614.

Girodet, P.; Nguyen, D.; Mancini, J.; Hundal, M.; Zhou, X.; Israel, E.; Cernadas, M. Alternative Macrophage Activation Is Increased in Asthma. Am. J. Respir. Cell Mol. Biol. 2016, 55(4), 467–475.

Li, J.; Kim, S.; Lainez, N.; Coss, D.; Nair, M. Macrophage-regulatory T Cell Interactions Promote Type 2 Immune Homeostasis Through Resistin-like Molecule Α. Front. Immunol. 2021, 12, 710406.

Jeffery, P.K.; Haahtela, T. Allergic rhinitis and asthma: inflammation in a one-airway condition. BMC Pulm Med. 2006, 6, S5.

Pawankar, R.; Mori, S.; Ozu, C.; Kimura, S. Overview on the Pathomechanisms of Allergic Rhinitis. Asia Pac. Allergy. 2011, 1(3), 157–167.

Nance, C.; Deniskin, R.; Diaz, V.; Paul, M.; Anvari, S.; Anagnostou, A. The Role of the Microbiome in Food Allergy: A Review. Children (Basel) 2020, 7(6), 50.

Statello, L.; Guo, C.-J.; Chen, L.-L.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-coding Rnas and Its Biological Functions. Nat Rev Mol Cell Biol. 2021, 22(2), 96-118.

Mattick, J.S., Amaral, P.P., Carninci, P., Carpenter, S., Chang, H.Y., Chen LL, Chen, R., Dean, C., Dinger, M.E., Fitzgerald, K.A., Gingeras, T.R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J.B., Lee, J.T., Mendell, J.T., Mercer, T.R., Moore, K.J., Nakagawa, S., Rinn, J.L., Spector, D.L., Ulitsky, I., Wan, Y., Wilusz, J.E., Wu, M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023, 24, 430-447.

Zhixia, Z.; Zhan, W.; Jie, G. et al. Noncoding RNA-mediated macrophage and cancer cell crosstalk in hepatocellular carcinoma. Molecular Therapy Oncolytics. 2022, 25, 98-120.

Xia L, Wang X, Liu L, Fu J, Xiao W, Liang Q, Han X, Huang S, Sun L, Gao Y, Zhang C, Yang L, Wang L, Qian L, Zhou Y. lnc-BAZ2B promotes M2 macrophage activation and inflammation in children with asthma through stabilizing BAZ2B pre-mRNA. J Allergy Clin Immunol. 2021,147(3), 921-932.

Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol. 2023, 54(4), 257-269.

Paoletti, A.; Rohmer, J.; Ly, B.; Pascaud, J.; Rivière, E.; Seror, R.; Le Goff, B.; Nocturne, G.; Mariette, X. Monocyte/macrophage Abnormalities Specific to Rheumatoid Arthritis Are Linked to Mir-155 and Are Differentially Modulated by Different TNF Inhibitors. J. Immunol. 2019, 203(7), 1766-1775.

Martinez-Nunez, R.T.; Louafi, F.; Sanchez-Elsner, T. The Interleukin 13 (IL-13) Pathway in Human Macrophages Is Modulated by Microrna-155 via Direct Targeting of Interleukin 13 Receptor Α1 (il13rα1). J. Biol. Chem. 2011, 286(3), 1786-1794.

Chia, N.; Kumar, R.K.; Foster, P.S.; Herbert, C. Enhanced Pro-inflammatory Response of Macrophages to Interleukin-33 in an Allergic Environment. Int. Arch. Allergy Immunol. 2018, 176(1), 74-82.

Jaiswal A; Maurya M; Maurya P; Barthwal MK. Lin28B Regulates Angiotensin II-Mediated Let-7c/miR-99a MicroRNA Formation Consequently Affecting Macrophage Polarization and Allergic Inflammation. Inflammation. 2020, 43(5), 1846-1861.

Banerjee S; Xie N; Cui H; Tan Z; Yang S; Icyuz M; Abraham E; Liu G. MicroRNA let-7c regulates macrophage polarization. J. Immunol. 2013, 190(12), 6542-6549.

Wang, L.; Liu, X.; Song, X.; Dong, L.; Liu, D. Mir-202-5p Promotes M2 Polarization in Allergic Rhinitis by Targeting MATN2. Int Arch Allergy Immunol. 2019, 178(2), 119-127.

Lee, H.Y.; Hur, J.; Kang, J.Y.; Rhee, C.K.; Lee, S.Y. Microrna-21 Inhibition Suppresses Alveolar M2 Macrophages in an Ovalbumin-induced Allergic Asthma Mice Model. Allergy Asthma Immunol Res. 2021, 13(2), 312-329.

Martinez-Pomares L. The mannose receptor. J Leukoc Biol. 2012, 92(6), 1177-1186.

Squadrito, M.L.; Pucci, F.; Magri, L.; Moi, D.; Gilfillan, G.D.; Ranghetti, A.; Casazza, A.; Mazzone, M.; Lyle, R.; Naldini, L. Mir-511-3p Modulates Genetic Programs of Tumor-associated Macrophages. Cell Rep. 2012, 1(2), 141-154.

Squadrito, M.L.; Etzrodt, M.; De Palma, M.; Pittet, M.J. Microrna-mediated Control of Macrophages and Its Implications for Cancer. Trends Immunol. 2013, 34(7), 350-359.

Zhou, Y.; Do, D.C.; Ishmael, F.T.; Squadrito, M.L.; Tang, H.M.; Tang, H.L.; Hsu, M.H.; Qiu, L.; Li, C.; Zhang, Y. Mannose Receptor Modulates Macrophage Polarization and Allergic Inflammation Through Mir-511-3p. J. Allergy Clin. Immunol. 2018, 141(1), 350-364.

Do, D.C.; Mu, J.; Mu, J.; Ke, X.; Sachdeva, K.; Qin, Z.; Wan, M.; Ishmael, F.T.; Gao, P. Mir-511-3p Protects Against Cockroach Allergen–induced Lung Inflammation by Antagonizing CCL2. JCI Insight. 2019, 4, e126832.

Heinsbroek, S.E.M.; Squadrito, M.L.; Schilderink, R.; Hilbers, F.W.; Verseijden, C.; Hofmann, M.; Helmke, A.; Boon, L.; Wildenberg, M.E.; Roelofs, J.J.T.H. Mir-511-3p, Embedded in the Macrophage Mannose Receptor Gene, Contributes to Intestinal Inflammation. Mucosal Immunol. 2016, 9(4), 960-973.

Chung, S.; Lee, Y.G.; Karpurapu, M.; Englert, J.A.; Ballinger, M.N.; Davis, I.C.; Park, G.Y.; Christman, J.W. Depletion of Microrna-451 in Response to Allergen Exposure Accentuates Asthmatic Inflammation by Regulating Sirtuin2. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318(5), L921-L930.

Veremeyko, T.; Siddiqui, S.; Sotnikov, I.; Yung, A.; Ponomarev, E.D.; Ponomarev, E.D. IL-4/IL-13-dependent and Independent Expression of Mir-124 and Its Contribution to M2 Phenotype of Monocytic Cells in Normal Conditions and During Allergic Inflammation. PLoS One. 2013, 8(12), e81774.

Shi, J.; Chen, M.; Ouyang, L.; Wang, Q.; Guo, Y.; Huang, L.; Jiang, S. Mir-142-5p and Mir-130a-3p Regulate Pulmonary Macrophage Polarization and Asthma Airway Remodeling. Immunol. Cell Biol. 2020, 98(9), 715-725.

Cui, H.; Banerjee, S.; Guo, S.; Xie, N.; Ge, J.; Jiang, D.; Zörnig, M.; Thannickal, V.J.; Liu, G. Long Noncoding RNA Malat1 Regulates Differential Activation of Macrophages and Response to Lung Injury. JCI Insight. 2019, 4(4), e124522.

Ye, Y.; Xu, Y.; Lai, Y.; He, W.; Li, Y.; Wang, R.; Luo, X.; Chen, R.; Chen, T. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J. Cell Biochem. 2018, 119(3), 2951-2963.

Pei, W.; Zhang, Y.; Li, X.; Luo, M.; Chen, T.; Zhang, M.; Zhong, M.; Lv, K. Lncrna AK085865 Depletion Ameliorates Asthmatic Airway Inflammation by Modulating Macrophage Polarization. Int Immunopharmacol. 2020, 83, 106450.

Zhang, Y.; Li, X.; Wang, C.; Zhang, M.; Yang, H.; Lv, K. Lncrna AK085865 Promotes Macrophage M2 Polarization in Cvb3-induced VM by Regulating ILF2-ILF3 Complex-mediated Mirna-192 Biogenesis. Mol Ther Nucleic Acids. 2020, 21, 441-451.

Wen, S.; Li, F.; Tang, Y.; Dong, L.; He, Y.; Deng, Y.; Tao, Z. MIR222HG Attenuates Macrophage M2 Polarization and Allergic Inflammation in Allergic Rhinitis by Targeting the miR146a-5p/Traf6/ NF-κB Axis. Front. Immunol. 2023, 14, 1168920.

Jiang, M.; Dai, J.; Yin, M.; Jiang, C.; Ren, M.; Tian, L. Lncrna MEG8 Sponging Mir-181a-5p Contributes to M1 Macrophage Polarization by Regulating SHP2 Expression in Henoch-schonlein Purpura Rats. Ann. Med. 2021, 53(1), 1576-1588.

Yu, C.-Y.; Yu, C.-Y.; Kuo, H.-C.; Kuo, H.-C. The Emerging Roles and Functions of Circular Rnas and Their Generation. J Biomed Sci. 2019, 26(1), 29.

Zhang, C.; Han, X.; Yang, L.; Fu, J.; Sun, C.; Huang, S.; Xiao, W.; Gao, Y.; Liang, Q.; Wang, X. Circular RNA Circppm1f Modulates M1 Macrophage Activation and Pancreatic Islet Inflammation in Type 1 Diabetes Mellitus. Theranostics 2020, 10(24), 10908-10924.

Katopodi, T.; Petanidis, S.; Domvri, K.; Zarogoulidis, P.; Anestakis, D.; Charalampidis, C.; Tsavlis, D.; Bai, C.; Huang, H.; Freitag, L. Kras-driven intratumoral heterogeneity triggers infiltration of M2 polarized macrophages via the circHIPK3/PTK2 immunosuppressive circuit. Sci Rep. 2021, 11(1), 15455.

Gong, B.; Zheng, Y.; Li, J.; Lei, H.; Liu, K.; Tang, J.; Peng, Y. Luteolin Activates M2 Macrophages and Suppresses M1 Macrophages by Upregulation of Hsa_circ_0001326 in THP-1 Derived Macrophages. Bioengineered 2022, 13(3), 5079-5090.

ダウンロード

公開済


投稿日時: 2023-09-05 03:17:17 UTC

公開日時: 2023-09-07 01:55:31 UTC
研究分野
生物学・生命科学・基礎医学