Sidesplitting using network meta-regression
DOI:
https://doi.org/10.51094/jxiv.493キーワード:
network meta-analysis、 contrast-based approach、 sidesplitting、 inconsistency、 design-by-treatment interaction抄録
Consistency is an important assumption to justify evidence synthesis in network meta-analysis. Sidesplitting is a representative method used to evaluate inconsistency; it decomposes the overall estimate of network meta-analysis on a specific treatment pair to those of direct and indirect comparisons and assesses their concordance. A relevant issue in sidesplitting is that adequate adjustments are needed in multi-arm trials (≥3 arms) to prevent biases. In existing methods, sidesplitting requires several restrictions on model parameters or additional parameter modeling and the computations are complicated. In this article, we show that sidesplitting involving the adjustments of multi-arm trials can be uniformly treated within a network meta-regression framework, especially via the modeling method of Noma et al. (2017; Stat Med 36:917-927), which introduces additional free parameters to adjust the biases caused by multi-arm trials. The proposed approach can be interpreted as a specific version of the design-by-treatment interaction model, and any inference methods for the network meta-regression can be applied involving higher-order asymptotic approximations. The proposed method is applied to two network meta-analyses of hypertensive drugs.
利益相反に関する開示
The author has no conflict interest to declare.ダウンロード *前日までの集計結果を表示します
引用文献
Balduzzi, S., Rücker, G., Nikolakopoulou, A., et al. (2023). netmeta: An R Package for network meta-analysis using frequentist methods. Journal of Statistical Software 106, 1-40.
Cox, D. R., and Reid, N. (1986). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B 49, 1-39.
Dias, S., Welton, N. J., Caldwell, D. M., and Ades, A. E. (2010). Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine 29, 932-944.
Elliott, W. J., and Meyer, P. M. (2007). Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369, 201-207.
Higgins, J. P., Jackson, D., Barrett, J. K., Lu, G., Ades, A. E., and White, I. R. (2012). Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Research Synthesis Methods 3, 98-110.
Higgins, J. P., and Whitehead, A. (1996). Borrowing strength from external trials in a meta-analysis. Statistics in Medicine 15, 2733-2749.
Higgins, J. P. T., and Thomas, J. (2019). Cochrane Handbook for Systematic Reviews of Interventions, 2nd edition. Chichester: Wiley-Blackwell.
Hutton, B., Salanti, G., Caldwell, D. M., et al. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Annals of Internal Medicine 162, 777-784.
Jackson, D., Barrett, J. K., Rice, S., White, I. R., and Higgins, J. P. (2014). A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Statistics in Medicine 33, 3639-3654.
Jackson, D., Boddington, P., and White, I. R. (2016). The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Research Synthesis Methods 7, 329-332.
Jackson, D., and Riley, R. D. (2014). A refined method for multivariate meta-analysis and meta-regression. Statistics in Medicine 33, 541-554.
Jackson, D., White, I. R., and Riley, R. D. (2013). A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom J 55, 231-245.
Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics 80, 220-239.
Lu, G., and Ades, A. E. (2009). Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 10, 792-805.
Mochizuki, S., Dahlof, B., Shimizu, M., et al. (2007). Valsartan in a Japanese population with hypertension and other cardiovascular disease (Jikei Heart Study): a randomised, open-label, blinded endpoint morbidity-mortality study (retracted). Lancet 369, 1431-1439.
Nikolakopoulou, A., White, I. R., and Salanti, G. (2021). Network meta-analysis. In Handbook of Meta-Analysis, C. H. Schmid, T. Stijnen, and I. R. White (eds), 187-217. Boca Raton: CRC Press.
Noma, H., Gosho, M., Ishii, R., Oba, K., and Furukawa, T. A. (2020). Outlier detection and influence diagnostics in network meta-analysis. Research Synthesis Methods 11, 891-902.
Noma, H., Hamura, Y., Gosho, M., and Furukawa, T. A. (2023). Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression. Research Synthesis Methods, DOI: 10.1002/jrsm.1652.
Noma, H., Nagashima, K., Maruo, K., Gosho, M., and Furukawa, T. A. (2018). Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis. Statistics in Medicine 37, 1178-1190.
Noma, H., Tanaka, S., Matsui, S., Cipriani, A., and Furukawa, T. A. (2017). Quantifying indirect evidence in network meta-analysis. Statistics in Medicine 36, 917-927.
Salanti, G. (2012). Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods 3, 80-97.
Sciarretta, S., Palano, F., Tocci, G., Baldini, R., and Volpe, M. (2011). Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Archives of Internal Medicine 171, 384-394.
Strom, B. L., Kimmel, S. E., and Hennessy, S. (2013). Textbook of Pharmacoepidemiology, 2nd edition. New York: Wiley.
van Valkenhoef, G., Dias, S., Ades, A. E., and Welton, N. J. (2016). Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Research Synthesis Methods 7, 80-93.
van Valkenhoef, G., Lu, G., de Brock, B., Hillege, H., Ades, A. E., and Welton, N. J. (2012). Automating network meta-analysis. Research Synthesis Methods 3, 285-299.
White, I. R. (2015). Network meta-analysis. Stata Journal 15, 951-985.
White, I. R., Barrett, J. K., Jackson, D., and Higgins, J. P. (2012). Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 3, 111-125.
ダウンロード
公開済
投稿日時: 2023-08-25 09:40:33 UTC
公開日時: 2023-08-29 10:30:27 UTC
ライセンス
Copyright(c)2023
Noma, Hisashi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。