このプレプリントは論文として出版されています
DOI: https://doi.org/10.1109/TASE.2024.3354952
プレプリント / バージョン3

A Position Controller for Hydraulic Excavators with Deadtime and Regenerative Pipelines

##article.authors##

  • Yamamoto, Yuki Graduate School of Advanced Science of Engineering, Hiroshima University https://orcid.org/0000-0003-2855-055X
  • Jinjun Qiu Kobelco Construction Machinery Co., Ltd.
  • Takayuki Doi Kobelco Construction Machinery Co., Ltd.
  • Takao Nanjo Kobelco Construction Machinery Co., Ltd.
  • Koji Yamashita Kobelco Construction Machinery Co., Ltd.
  • Ryo Kikuuwe Graduate School of Advanced Science of Engineering, Hiroshima University https://orcid.org/0000-0002-1500-6777

DOI:

https://doi.org/10.51094/jxiv.440

キーワード:

Position control、 Hydraulic system、 Time delay

抄録

This paper proposes a position controller for commercial hydraulic excavators. It is constructed by combining a proportional-derivative (PD) controller and a sliding-mode controller as a differential algebraic inclusion and also is integrated with a recently-proposed hydraulic actuator model. The use of the PD control is intended to make the controller insensitive to the deadtime in the hydraulic system, which is typically 0.1 s to 0.6 s in commercial excavators. The use of the sliding-mode controller combined with the actuator model is for handling the saturation of the actuator force, which may happen when the target position is not close enough to the current position and when the relief valves open. Moreover, this paper extends the controller to deal with the effect of the regenerative pipelines, which are embedded in commercial excavators to realize efficient operations but act as a source of disturbance on the controller. This paper also shows an analysis that can be used for tuning the controller parameters. The proposed controller was validated with simulations and experiments using a 13-ton class excavator, in which some set-point control tasks and trajectory-tracking tasks were performed.

利益相反に関する開示

The authors declare no potential conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

J. Kim, M. Jin, W. Choi, and J. Lee, “Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control,” Mechatronics, vol. 60, pp. 15–25, 2019. doi:10.1016/j.mechatronics.2019.04.008P.

H. Chang and S.-J. Lee, “A straight-line motion tracking control of hydraulic excavator system,” Mechatronics, vol. 12, no. 1, pp. 119–138,2002. doi: 10.1016/S0957-4158(01)00014-9

Y. Wang, L. Gu, B. Chen, and H. Wu, “A new discrete time delay control of hydraulic manipulators,” Proceedings of the Institution of MechanicalEngineers, Part I: Journal of Systems and Control Engineering, vol. 231,no. 3, pp. 168–177, 2017. doi: 10.1177/0959651816689340

S. Kim, J. Park, S. Kang, P. Y. Kim, and H. J. Kim, “A robust control approach for hydraulic excavators using µ-synthesis,” InternationalJournal of Control, Automation and Systems, vol. 16, no. 4, pp. 1615–1628, 2018. doi: 10.1007/s12555-017-0071-9

Y. Ye, C.-B. Yin, Y. Gong, and J.-J. Zhou, “Position control of non-linear hydraulic system using an improved PSO based PID controller,”Mechanical Systems and Signal Processing, vol. 83, pp. 241–259, 2017.doi: 10.1016/j.ymssp.2016.06.010

H. Feng, W. Ma, C. Yin, and D. Cao, “Trajectory control of electro-hydraulic position servo system using improved PSO-PID con-troller,” Automation in Construction, vol. 127, p. 103722, 2021. doi:10.1016/j.autcon.2021.103722

H. Feng, C.-B. Yin, W.-W. Weng, W. Ma, J.-J. Zhou, W.-H. Jia, and Z.-L. Zhang, “Robotic excavator trajectory control using an improvedGA based PID controller,” Mechanical Systems and Signal Processing,vol. 105, pp. 153–168, 2018. doi: 10.1016/j.ymssp.2017.12.014

H. Feng, C. Yin, W. Ma, H. Yu, and D. Cao, “Parameters identification and trajectory control for a hydraulic system,” ISA Transactions, vol. 92,pp. 228–240, 2019. doi: 10.1016/j.isatra.2019.02.022

Y. Li and Q. Wang, “Adaptive neural finite-time trajectory tracking control of hydraulic excavators,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,vol. 232, no. 7, pp. 909–925, 2018. doi: 10.1177/0959651818767770

J. Park, B. Lee, S. Kang, P. Y. Kim, and H. J. Kim, “Online learning control of hydraulic excavators based on echo-state networks,” IEEETransactions on Automation Science and Engineering, vol. 14, no. 1,pp. 249–259, 2017. doi: 10.1109/TASE.2016.2582213

Y. Yamamoto, J. Qiu, Y. Munemasa, T. Doi, T. Nanjo, K. Yamashita,and R. Kikuuwe, “A sliding-mode set-point position controller for hydraulic excavators,” IEEE Access, vol. 9, pp. 153 735–153 749, 2021.doi: 10.1109/ACCESS.2021.3128215

R. Kikuuwe, T. Okada, H. Yoshihara, T. Doi, T. Nanjo, and K. Ya-mashita, “A nonsmooth quasi-static modeling approach for hydraulic actuators,” ASME Journal of Dynamic Systems, Measurement, andControl, vol. 143, no. 12, p. 121002, 2021. doi: 10.1115/1.4051894

J. E. Normey-Rico and E. F. Camacho, Control of dead-time processes. Springer, 2007. ISBN 978-1-84628-828-9 978-1-84628-829-6

R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, “Proxy-based sliding mode control: a safer extension of PID position control,”IEEE Transactions on Robotics, vol. 26, no. 4, pp. 670–683, 2010. doi:10.1109/TRO.2010.2051188

R. Kikuuwe, “A sliding-mode-like position controller for admittance control with bounded actuator force,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 5, pp. 1489–1500, 2014. doi:10.1109/TMECH.2013.2286411

J. Xu and H.-S. Yoon, “Sliding mode control of hydraulic excavator for automated grading operation,” SAE International Journal of CommercialVehicles, vol. 11, no. 2, pp. 113–124, 2018. doi: 10.4271/02-11-02-0010

M. H. Nguyen, H. V. Dao, and K. K. Ahn, “Extended sliding mode observer-based high-accuracy motion control for uncertain electro-hydraulic systems,” International Journal of Robust and NonlinearControl, vol. 33, no. 2, pp. 1351–1370, 2023. doi: 10.1002/rnc.6421

D. Cristofori and A. Vacca, “Modeling hydraulic actuator mechanical dynamics from pressure measured at control valve ports,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 229, no. 6, pp. 541–558, 2015. doi:10.1177/0959651814568366

W. Borutzky, B. Barnard, and J. Thoma, “An orifice flow model for laminar and turbulent conditions,” Simulation Modelling Practice andTheory, vol. 10, no. 3-4, pp. 141–152, 2002. doi: 10.1016/S1569-190X(02)00092-8

A. Lichtarowicz, R. K. Duggins, and E. Markland, “Discharge coefficients for incompressible non-cavitating flow through long orifices,”Journal of Mechanical Engineering Science, vol. 7, no. 2, pp. 210–219,1965. doi: 10.1243/JMES_JOUR_1965_007_029_02

Y. Ye, C.-B. Yin, X.-D. Li, W.-J. Zhou, and F.-F. Yuan, “Effects of groove shape of notch on the flow characteristics of spool valve,”Energy Conversion and Management, vol. 86, pp. 1091–1101, 2014.doi: 10.1016/j.enconman.2014.06.081

D. Wu, R. Burton, and G. Schoenau, “An empirical discharge coefficient model for orifice flow,” International Journal of Fluid Power, vol. 3,no. 3, pp. 13–19, 2002. doi: 10.1080/14399776.2002.10781143

R. Kikuuwe, Y. Yamamoto, and B. Brogliato, “Implicit implementation of nonsmooth controllers to nonsmooth actuators,” IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 4645–4657, 2022. doi:10.1109/TAC.2022.3163124

H. K. Khalil, Nonlinear systems, 3rd ed. Prentice Hall, 2002. ISBN978-0-13-067389-3

R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto,“Admittance and impedance representations of friction based on implicitEuler integration,” IEEE Transactions on Robotics, vol. 22, no. 6, pp.1176–1188, 2006. doi: 10.1109/TRO.2006.886262

R. Kikuuwe, T. Okada, H. Yoshihara, T. Doi, T. Nanjo, and K. Ya-mashita, “Nonsmooth quasistatic modeling of hydraulic actuators,”arXiv:2102.11381, 2021. doi: 10.48550/arXiv.2102.11381

ダウンロード

公開済


投稿日時: 2023-07-05 09:49:17 UTC

公開日時: 2023-07-10 00:32:19 UTC — 2023-11-22 05:27:07 UTCに更新

バージョン

改版理由

The manuscript has been revised in some places.
研究分野
機械工学