From Femtosecond Laser Processing to Millimeter-Scale Nanowires: Multiscale Material Design for Next-Generation Devices
DOI:
https://doi.org/10.51094/jxiv.3021キーワード:
Nonthermal material processing、 Micro/nano fabrication、 Electronic and photonic materials、 Advanced sensing platforms、 Scalable nanostructuring、 Laser-induced periodic surface structures (LIPSS)抄録
Recent progress in ultrafast laser–matter interaction has enabled new approaches for engineering materials across multiple length scales with high spatial precision and limited thermal damage. Femtosecond laser processing, in particular, offers a flexible and maskless method for tailoring surface and near-surface structures while preserving underlying material integrity. This study investigates a multiscale materials design strategy that links femtosecond laser–induced surface modification with the formation and integration of extended nanowire architectures. The influence of laser processing parameters on surface morphology, structural anisotropy, and nanowire Nucleation behavior is examined across nano-, micro-, and millimeter-length scales. By correlating hierarchical structural features with electrical, optical, and mechanical responses, the work highlights how controlled laser-generated templates can support nanowire growth and functional coherent continuity over extended dimensions. The results provide insights into the role of ultrafast laser processing as a unifying tool for multiscale material engineering, with relevance to electronic, photonic, sensing, and energy-related device platforms.
利益相反に関する開示
There are no conflicts of interest to discloseダウンロード *前日までの集計結果を表示します
引用文献
Joshy, A., Wang, F., Younus, S., et al. (2025). Scalable synthesis of millimeter-long single-crystal Ta₂Ni₃Se₈ van der Waals nanowires. Scientific Reports, 15, 19535.
Nawaz, T., Younus, S., Ahmad, S., Abuzaid, W., Boltaev, G. S., Khamis, M., Husseini, G. A., & Alnaser, A. S. (2025). Biocompatibility and drug release kinetics of TiNbZrSn femtosecond laser-induced superhydrophilic structures. Applied Surface Science Advances, 25, 100665.
Quan, Y., Yue, S., & Liao, B. (2021). Impact of electron–phonon interaction on thermal transport: A review. Nanoscale and Microscale Thermophysical Engineering, 25(2), 73–90.
Wang, F., Zhou, Q., Tang, H., Zhang, F., Li, Y., Sanchez, A. M., & Wei, J. (2025). Unusual electron–phonon interactions in highly anisotropic two-dimensional Ta₂Ni₃Te₅. arXiv preprint, arXiv:2506.05809.
Wu, Z., Li, Y., Huang, D., & Tang, G. (2025). Electron–phonon coupled nonequilibrium thermal transport in Cu/GaN heterojunctions with fractal rough interfaces. Physical Review B, 112(3), 035306.
Xu, Z., Mao, R., & Gao, P. (2026). Atomic-scale interface phonon engineering for thermal management: An electron microscopy review. Advanced Functional Materials, e26614.
Younus, S. (2025, March). Millimeter-scale TNS nanowire growth for electronics and photonics. In Proceedings of SMT 2025.
Younus, S., Mustafa, F., Egilmez, M., Al Awadhi, M., Abuzaid, W., El Khatib, S., Alagöz, S., & Alami, A. H. (2024). Magnetotransport and critical behavior in metastable Fe–Cu. International Journal of Modern Physics B, 38(7), 2450101.
Zhou, Z., Yang, X., Fu, H., Wang, R., Lu, X., Wang, G., & Zhou, X. (2022). Anomalous thermal transport driven by electron–phonon coupling in two-dimensional semiconductor h-BP. Advanced Functional Materials, 32(45), 2206974.
ダウンロード
公開済
投稿日時: 2026-02-10 22:39:19 UTC
公開日時: 2026-02-18 05:58:54 UTC
ライセンス
Copyright(c)2026
G. Anand, Lawal
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
