プレプリント / バージョン5

Boosting the Magnetic Field of a Torus-shaped Conductive Fluid via Poloidal Flow

##article.authors##

  • Otsuki, Mamoru Independent

DOI:

https://doi.org/10.51094/jxiv.284

キーワード:

Poloidal flow、 dynamo theory、 inductance、 numerically calculated eigenvalues、 celestial magnetic field

抄録

Researchers have struggled to understand the mechanism underlying the formation of celestial magnetic fields. Currently, the generation of axisymmetric and poloidal magnetic fields can be solved by complex convection arguments. There are also claims of simple convection, but these claims are not purely simple axisymmetric convection claims. This paper addresses a truly simple axisymmetric poloidal convection and magnetic field. To calculate the electrical components, this paper introduces a theory that separates the vector potential into inductance and current in a relational formula. The reason is to consider the mutual influence between distant circuits in terms of mutual inductance. That is, consider that each circuit is electrically affected by all other circuits. A solution that considers mutual influence can be obtained by using multiples of these equations as simultaneous equations and numerically calculating them as eigenvalue problems. The change in current is subsequently calculated from the change in inductance. Using this method, the generation of a simple axisymmetric poloidal magnetic field from axisymmetric poloidal convection is demonstrated. These concepts are novel, and we believe that these findings will contribute to further elucidating the formation mechanism of celestial magnetic fields. This work also disproves Cowling's theorem.

利益相反に関する開示

The author has no conflicts of interest to declare. No funding was obtained for this work.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Levy, E.H.: Generation of planetary magnetic fields. Annu. Rev. Earth Planet. Sci. 4, 159–185 (1976)

Parker, E.N.: Hydromagnetic dynamo models. Astrophysical J. 122, 293–314 (1955)

Cowling, T.G.: The magnetic field of sunspots. Monthly Notices Roy. Astronomical Soc. 94(1), 39–48 (1933)

Masada, Y., Sano, T.: Mean-field modeling of an α2 dynamo coupled with direct numerical simulations of rigidly rotating convection. The Astrophysical Journal Letters 794(1), 6 (2014)

Sheremetyeva, Olga V., Godomskaya, Anna N.: The modes of magnetic field generation in a low-mode model of αω-dynamo with α-generator varying intensity regulated by a function with an alternating kernel. EPJ Web Conf. 254, 02015 (2021) https://doi.org/10.1051/epjconf/202125402015

M. STEENBECK, F.K., RÄDLER, K.-H.: Berechnung der mittleren Lorentzfeldstärke b × B für ein elektrisch leitendes medium in turbulenter, durch coriolis-kräfte beeinflußter bewegung. Institut für Magnetohydrodynamik Jena der Deutschen Akademie der Wissenschaften zu Berlin 21 a, 369–376 (1966)

J. J. Love, D.G.: Dynamos driven by poloidal flow exist. Geophys. Res. Lett. 23(8), 857–860 (1996)

Matthews, P.C.: Dynamo action in simple convective flows. Mathematical, Physical and Engineering Sciences 455, 1829–1840 (1985)

Cardin, P., Cugliandolo, L.G.: Dynamos: Lecture Notes of the Les Houches Summer School 2007. Les Houches, vol. 88, p. 496. Elsevier Science, Oxford (2011)

Otsuki, M.: Boosting the Magnetic Field of a Toroidal Conductive Fluid by Poloidal Flow. Preprint at https://doi.org/10.51094/jxiv.284 (2023)

Moffatt, K., Dormy, E.: Self-Exciting Fluid Dynamos. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2019)

Rojansky, V.B., Rojansky, V.: Electromagnetic Fields and Waves. Dover Books on Physics Series. Dover Publications, New York (1979)

ダウンロード

公開済


投稿日時: 2023-02-13 11:54:06 UTC

公開日時: 2023-02-14 11:13:06 UTC — 2025-07-01 05:58:03 UTCに更新

バージョン

改版理由

The length of the manuscript was shortened, and the explanation was improved and corrected.
研究分野
物理学