デュアルプロセス理論に基づく論理命題との直感的な矛盾解消が可能な 組み合わせ探索方法の開発と地盤同定への適用性検証
DOI:
https://doi.org/10.51094/jxiv.2679キーワード:
組み合わせ最適化、 デュアルプロセス理論、 予測符号化モデル、 階層化された解空間抄録
地盤同定問題において,情報不足を解決するために,ペナルティ法を用いて数値化困難な事前情報を取り入れようとすると,事前情報の制約違反度を求めるのにかかる時間に比べて,フォワード計算にかかる時間が大きいため,計算効率が悪くなる.この課題を解決するために,本論文では,数値化困難で計算処理が軽い直感的知識と,数値指標化が容易で計算処理が重い客観的知識を分離して,2段階処理できる組み合わせ最適化手法を提案する.この提案手法は,デュアルプロセス理論に着想を得ており,System1とSystem2に対応する2段階に階層化された解空間を持ち,第1階層の解空間が第2階層と相互作用して世代ごとに変動することが特徴である.EHVRを指標とする地盤同定問題をベンチマークとした性能テストを行ったところ,提案手法は,従来のペナルティ法よりも高速かつ高精度に地盤物性を同定できた.
利益相反に関する開示
本稿に関する利益相反はありません。ダウンロード *前日までの集計結果を表示します
引用文献
村上章, 長谷川高士, Kalmanフィルタを用いた圧密沈下量の観測的予測, 農業土木学会論文集, Vol.120, 1985, pp.61–67.
村上章, 長谷川 高士, Kalmanフィルタ有限要素法による逆解析と観測節点配置, 土木学会論文集, 第388号/III-8, 1987, pp.227–235.
村上章, 構造工学・地盤工学における Kalman フィルタの適用, 土木学会論文集, 1992.
長谷川高士, 村上章, Kalmanフィルターによるダム漏水量の予測, 農業土木学会論文集, 1986.
T. Kawamoto & Y. Ichikawa, eds., Observational prediction of settlement using Kalman filter theory, in Numerical Methods in Geomechanics, 1985.
村上 章・登坂 宣好・堀 宗朗・鈴木 誠(編著), 有限要素法・境界要素法による逆問題解析 — カルマンフィルタと等価介在物法の応用, コロナ社, 2002.
SUTOH, A,.拡張カルマンフィルタの基本的考察とEK-WLI法の提案, 土木学会論文集, 1991.
Doornbos, D.J., Computational methods and computer programs, Seismological algorithms, 1988.
Hiroshi Kawase, Francisco J. Sánchez-Sesma, and Shinichi Matsushima., The Optimal Use of Horizontal-to Vertical Spectral Ratios of Earthquake Motions for Velocity Inversions Based on diffuse-Field Theory for Plane Waves, Bull. Seism. Soc. Am., Vol.101, No.5, 2011, pp. 2001-2014.
山中浩明, 石田寛: 遺伝的アルゴリズムによる位相速度の逆解析, 日本建築学会構造系論文集, Vol.468,pp.9−17,1995.
F.Nagashima, S.Matsushima, H.Kawase, Francisco J. Sánchez-Sesma, T.Hayakawa, T.Satoh, M.Oshima., Application of Horizontal-to-Vertical Spectral Ratio of Earthquake Ground Motions to dentify Subsurface Structures at and around the K-NET Site in Tohoku, Japan, Bull. Seism. Soc. Am., Vol.104, No.5, 2014, pp.2288-2302.
Davis, M., Logemann, G. and Loveland, D., A machine program for theorem proving, Commun. ACM, Vol. 5, No. 7, pp. 394-397, 1962.
Bayardo, R. J. and Schrag, R. C., Using CSP lookback techniques to solve real-world sat instances, Proc. ,AAAI-97, pp. 203-208, 1997.
Silva, J. P. M. and Sakallah, KA., GRASP-A search algorithm for propositional satisfiability, IEEE Trans. on Computers, Vol. 48, pp. 506-521, 1999.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S.: Chaff: Engineering an efficient SAT solver, Proc. DAC-01, pp. 530-535, 2001.
Gomes, C. P., Selman, B. and Kautz, H. A., Boosting combinatorial search through randomization, Proc. AAAI-98, pp. 431-437, 1998.
船越泰輔, 番原睦則, 田村直之, ハミルトン閉路問題のSAT符号化に関する研究, The 26th Annual Conference of the Japanese Society for Artificial Intelligence, pp. 1-4, 2012.
Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell., IntSat: integer linear programming by conflict-driven constraint learning, Optimization Methods and Software, pp. 169–196, 2024.
T. Satou, M. Yoshimura., Optimal Design Method based on Creative Simplification and Clarification of Conflicting and Cooperative Relationships, The Proceedings of Design & Systems Conference, pp. 136-139, 2001.
J. Kishi., Masahiko Sakai, Naoki Nishida, Kenji Hashimoto, Speeding up the combinatorial optimization solver CombSQL+ by introducing pseudo-Boolean constraints, IEICE Technical Report, pp. 15-20, 2019.
向毅, 周育人, 蔡少伟, 集成偏好的高维多目标最优软件产品选择算法, 软件学报(Journal of Software), pp. 282-301, 2020.
Page, M. T., Field, E. H., Milner, K. R., and Powers, P. M., The UCERF3 Grand Inversion: Solving for the Long‐Term Rate of Ruptures in a Fault System, Bull. Seism. Soc. Am., Vol.104, No.3, 2014, pp.1181–1204..
Geist, E. L. and Parsons, T., Determining on-fault earthquake magnitude distributions from integer programming, Computers & Geosciences, Vol.111, 2018, pp.244–259.
Demirović, E., Musliu, N. and Winter, F., Modeling and solving staff scheduling with partial weighted MaxSAT, Annals of Operations Research, Vol.275, 2019, pp.79–99.
Narodytska, N. and Bacchus, F., Maximum Satisfiability Using Core-Guided MaxSAT Resolution, Proc. AAAI-14, 2014, pp.2717–2723.
Rudová, H. and Murray, K., University Course Timetabling with Soft Constraints, Proc. PATAT-2003 (Proceedings), 2003.
Fiacco, A. V. and McCormick, G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, 1968.
Bertsekas, D. P., On Penalty and Multiplier Methods for Constrained Minimization, SIAM J. Control Optim., 1976.
Di Pillo, G., Exact Penalty Functions in Constrained Optimization, 1989.
Bertsekas, D. P., Enhanced Optimality Conditions and Exact Penalty, 2000.
Chen, L. & Deb, K., Effect of Objective Normalization and Penalty Parameter on Penalty Boundary Intersection, Evolutionary Computation , 2021.
Friston, K. J. & Kiebel, S. J.: Predictive coding under the free-energy principle, Philosophical Transactions of the Royal Society B, Vol.372(1719):20160198, 2016.
Clark, A.: Surfing Uncertainty: Prediction, Action, and the Embodied Mind, Oxford University Press, 2016.
Gilboa, A. & Marlatte, H.: Neurobiology of schemas and schema-mediated memory, Trends in Cognitive Sciences, Vol.21, No.8, pp.618–631, 2017.
van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., & Henson, R. N.: How schema and novelty augment memory formation, Trends in Neurosciences, Vol.41, No.12, pp.579–592, 2018.
Brodski, A., Paasch, G. N., Helbling, S., & Wibral, M.: The rise and fall of expectations and prediction error in the brain, Journal of Neuroscience, Vol.35, No.4, pp.1230–1241, 2015.
Heilbron, M. & Chait, M.: Great expectations: Is there evidence for predictive coding in auditory cortex?, Neuroscience, Vol.389, pp.54–73, 2018.
Rameson, L. T., Satpute, A. B., & Lieberman, M. D., The neural correlates of implicit and explicit self-relevant processing, NeuroImage, pp. 701–708, 2010.
Kitayama, S., Chua, H. F., Tompson, S., & Han, S., Neural mechanisms of dissonance: An fMRI investigation of choice justification, NeuroImage, pp. 1459-1467, 2013.
van Veen, V., Krug, M. K., Schooler, J. W., & Carter, C. S., Neural activity predicts attitude change in cognitive dissonance, Nature Neuroscience, pp. 1469-1474, 2009.
Harmon-Jones, E., & Harmon-Jones, C., Cognitive dissonance theory after 50 years of development, Zeitschrift für Sozialpsychologie, pp. 7-16, 2007.
The specious present: A neurophenomenology of time consciousness, Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science,: pp. 266-314, 1999.
Varela, F. J., The specious present: A neurophenomenology of time consciousness, Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science,: pp. 266-314, 1999.
Shenhav, A., Botvinick, M. M., & Cohen, J. D., The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function, Neuron, pp. 298-320, 2013.
Wessel, J. R., & Aron, A. R., Common Mechanisms for the Control of Inhibitory and Error Detection Functions: The Roles of Prefrontal Cortex and Anterior Cingulate Cortex, Neuron, pp. 990-1001, 2017.
Hsieh, L. T., & Ranganath, C., Frontal Midline Theta Oscillations during Working Memory Maintenance and Episodic Encoding and Retrieval, NeuroImage, pp. 353-362, 2014.
Giulio T., Consciousness as integrated information: a provisional manifesto, The Biological Bulletin, pp. 216-242, 2008.
Masafumi Oizumi, Larissa Albantakis, Giulio Tononi., From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0, PLoS Computational Biology, e1003588, 2014.
吉原智恵子, 認知の変容を促す対人的相互作用過程に関する研究, 名古屋大学博士論文, pp.49-64, 2019.
Fisher, A., & Gevgen, R., Neural Mechanisms of Human Decision‑Making, arXiv:1912.07660, 2019.
Lengyel, M., Koblinger, Á., Popović, M., & Fiser, J., On the Role of Time in Perceptual Decision Making, arXiv:1502.03135, 2015.
Sherman, M., et al., Beyond the Surface: A New Perspective on Dual-System Theories in Decision-Making, Behavioral Sciences, 14(11):1028, 2024.
Glimcher, P. W., Understanding Dopamine and Reinforcement Learning: the dopamine reward prediction error hypothesis, PNAS, 108 Suppl 3:15647–15654, 2011.
Kahneman, D., Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.
Nickerson, R. S., Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), pp. 175–220, 1998.
Mercier, H., & Sperber, D., Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), pp. 57–111, 2011.
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H., & Kok, A., Error-related brain potentials are differentially related to awareness of response errors. Psychophysiology, 38(5):752–760, 2001.
M. Oaksford and N. Chater., A rational analysis of the selection task as optimal data selection, Psychological Review, Vol.101, No.4, pp.608–631, 1994.
H. Mercier and D. Sperber., Why do humans reason? Arguments for an argumentative theory, Behavioral and Brain Sciences, Vol.34, No.2, pp.57–111, 2011.
H. A. Simon., A behavioral model of rational choice, Quarterly Journal of Economics, Vol.69, No.1, pp.99–118, 1955.
T. T. Hills, P. M. Todd, D. Lazer, A. D. Redish, I. D. Couzin, M. Bateson, R. Cools, R. Dukas, L. A. Giraldeau, et al., Exploration versus exploitation in space, mind, and society, Trends in Cognitive Sciences, Vol.19, No.1, pp.46–54, 2015.
Richard M. Shiffrin and Walter Schneider., Controlled and automatic human information processing, II. Perceptual learning, automatic attending and a general theory, Psychological Review, Vol. 84, No. 2, pp. 127-190, 1977.
Moshe Bar., The Proactive Brain: Using Analogies and Associations to Generate Predictions,Trends in Cognitive Sciences,: Vol. 11, No. 7, pp. 280-289, 2011.
Allan M. Collins and Elizabeth F. Loftus., A spreading-activation theory of semantic processing, Psychological Review, Vol. 82, No. 6, pp. 407-428, 1975.
Timothy T. Rogers, and James L. McClelland., A Parallel Distributed Processing Approach to Semantic Cognition: Applications to Conceptual Development, Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1-6, 2010.
Gordon H. Bower., A multicomponent theory of the memory trace, The Psychology of Learning and Motivation, Vol. 1, pp. 229-325, 1967.
Ken A. Paller, Joel L. Voss, and David A. Boehm., Validating Neural Correlates of Familiarity,: Trends in Cognitive Sciences,: Vol. 11, No. 6, pp. 243-250, 2011.
Moshe Bar., The Proactive Brain: Using Analogies and Associations to Generate Predictions, Trends in Cognitive Sciences, Vol. 11, No. 7, pp. 280-289, 2011.
Timothy T. Rogers, James L. McClelland., A Parallel Distributed Processing Approach to Semantic Cognition: Applications to Conceptual Development, Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1-6, 2010.
Christopher Baldassano, Jung H. Chen., A. Zadbood, Jonathan W. Pillow, U. Hasson, Kenneth A. Norman., Discovering Event Structure in Continuous Narrative Perception and Memory, Neuron, Vol. 95, No. 3, pp. 709-721.e5, 2017.
Andrew J. Anderson, Michael L. Speer, and Jeffrey M. Zacks., Neural Correlates of the Perception of Event Segmentation, Laboratory of Brain and Cognition, pp. 1-10, 2013.
Marlene Behrmann, and David C. Plaut., Distributed circuits, not circumscribed centers, mediate visual recognition,Trends in Cognitive Sciences, Vol. 17, No. 5, pp. 210-219, 2013.
David E. Rumelhart., Schemata., The Building Blocks of Cognition,Theoretical Issues in Reading Comprehension, pp. 33-58, 2011.
T. Kaji., A Simulated Annealing Algorithm with the Random Compound Move for the Sequential Partitioning Problem of Directed Acyclic Graphs, European Journal of Operational Research, Vol.112, No.1, pp.147-157, 1999.
加地太一, 丸田 寛之, 系列分割問題に対する確率的複合移動によるSimulated Annealing法の適用, 情報処理学会論文誌, Vol.38, No.12, pp.2411-2418, 1997.
Bruce E. Rosen, 中野良平, シミュレーテッドアニーリング, 基礎と最新技術, 人工知能学会誌, Vol. 9, No. 3, pp. 365-372, 1994.
野々部宏司, 柳浦睦憲, 局所探索法とその拡張—タブー探索法を中心として, 計測と制御, Vol. 47, No. 6, pp. 493-499, 2008.
栗原拓哉, 神野健哉, 時変タブー期間を有するタブーサーチによるTSPの解法, 電子情報通信学会 技術研究報告(NLP2010-163), pp. 1-6, 2011.
A.-R. Hedar, M. Fukushima., Tabu Search Directed by Direct Search Methods for Nonlinear Global Optimization, European Journal of Operational Research, 2004.
Nieves L. Díaz-Díaz, Petra de Saá Pérez., The interaction between external and internal knowledge sources: an open innovation view, Journal of Knowledge Management, Vol. 18 No. 2, pp. 430-446, 2014.
McKay, M.D., Beckman, R.J., Conover, W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, pp. 239-245, 1979.
内野大介, 鈴木紘一, 衣笠善博, Vp-Vs 関係式によるP波速度構造からS波速度構造の推定について, S049-P005.
上林宏敏, 大堀道広, 川辺秀憲, 釜江克宏, 山田浩二, 宮腰研, 岩田知孝, 関口春子, 浅野公之, 和歌山平野の3次元地下構造モデル構築と中央構造線断層帯による強震動予測, 日本地震工学会論文集, Vol.18, No.5, pp.5_33-5_56, 2018.
F. J. Sánchez-Sesma, M. Rodríguez, U. Iturrarán-Viveros, F. Luzón, et al., A theory for microtremor H/V spectral ratio: Application for a layered medium, Geophys. J. Int., Vol.186, No.1, pp.221–225, 2011.
J. M. Carcione., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, Elsevier, 2007.
B. L. N. Kennett., Seismic Wave Propagation in Stratified Media, Cambridge University Press, 1983.
A. García-Jerez, J. Piña-Flores, F. J. Sánchez-Sesma, F. Luzón, M. Perton., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption, Computers & Geosciences, Vol.97, pp.67–78, 2016.
Picozzi, M. and Albarello, D., Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves, Geophysical Journal International, Vol.169, No.1, pp.189–200, 2007.
Rong, Mianshui; Fu, Li-Yun; Sánchez-Sesma, Francisco José; Sun, Weijia, Joint inversion of earthquake-based horizontal-to-vertical spectral ratio and phase velocity dispersion: Applications to Garner Valley, Frontiers in Earth Science, Vol.10, Article 948697 (article number; no page range), 2022.
Klimek, Marcin, A genetic algorithm for the project scheduling with the resource constraints, Annales UMCS Informatica AI, Vol. X, No.1, pp.117–130, 2010.
Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A. and Prasath, V. B. S., Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach, Information, Vol.10, No.12, Article 390, 2019.
Contreras-Bolton, C. and Parada, V., Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem, PLoS ONE, Vol.10, No.9, e0137724, 2015.
ダウンロード
公開済
投稿日時: 2026-01-20 02:36:44 UTC
公開日時: 2026-01-26 06:28:42 UTC
ライセンス
Copyright(c)2026
松倉, 敏寛
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
