Extended Schröder’s method and the two quadratic convergence formulas
DOI:
https://doi.org/10.51094/jxiv.2544キーワード:
Schröder’s method、 Newton's method抄録
We give an extended Schröder’s method from extended Newton’s method. We then derive two quadratic convergence formulas from the extended Schröder’s method. Next, the condition under which the extended Schröder’s method is equal to or faster than the Schröder's method in converging to the m-multiple root of f(x)=0 is given. Finally, we give examples.
利益相反に関する開示
The authors declare no conflicts of interest.ダウンロード *前日までの集計結果を表示します
引用文献
S. Horiguchi, The Formulas to Compare the Convergences of Newton’s Method and the Extended Newton’s Method(Tsuchikura-Horiguchi’s Method) and the Numerical Calculations, Applied Mathematics
http://dx.doi.org/10.4236/am.2016.71004
S. Horiguchi, Binomial expansion of Newton’s method,
http://arxiv.org/abs/2109.12362
E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Annal., 2(1870), 317-365.
H. Nagasaka,『Computers and Numerical Analysis 』(In Japanese), Asakura Publishing Co., Ltd.,1980.
ダウンロード
公開済
投稿日時: 2026-01-10 14:07:29 UTC
公開日時: 2026-02-16 10:59:21 UTC
ライセンス
Copyright(c)2026
Shunji Horiguchi
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
