プレプリント / バージョン1

Sim-to-Real Acceleration Prediction Using Deep Learning for Shock Avoidance in Mobile Robots

##article.authors##

  • Shirono, Hiroto National Institute of Technology, Oita College
  • Shigematsu, Kosuke National Institute of Technology, Oita College

DOI:

https://doi.org/10.51094/jxiv.2412

キーワード:

Deep Learning、 Convolutional Neural Network、 Long Short-Term Memory、 Acceleration Prediction

抄録

Mobile robots operating on uneven terrain face shocks and vibrations that jeopardize stability and sensor reliability. To enhance safety, this study proposes a deep learning framework to predict the maximum resultant acceleration within a short future window. The model processes multimodal time-series data, including Inertial Measurement Unit (IMU) data, velocity, command velocity, and depth images. A Convolutional Neural Network (CNN) extracts spatial terrain features, while a Long Short-Term Memory (LSTM) network captures temporal dynamics to infer future physical loads.
Experiments were conducted using datasets generated in Isaac Sim across slopes and steps. The proposed model demonstrated real-time capability with an average processing time of 1.13 ms. Quantitatively, the model yielded a Root Mean Squared Error (RMSE) of 3.71 m/s2 for a prediction horizon of 0.5 seconds. In comparison, a baseline model that directly propagates the most recent maximum acceleration to the future yielded an RMSE of 6.93 m/s2, indicating that the proposed method significantly improves prediction performance. These results confirm the method's effectiveness in anticipating impacts, supporting its application in risk-adaptive motion planning for autonomous navigation.

利益相反に関する開示

The authors declare no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart and D. Scaramuzza, “The current state and future outlook of rescue robotics”, Journal of Field Robotics, Vol. 36, pp. 1171–1191, 2019.

C. F. Periu, A. Mohsenimanesh, C. Laguë and N. B. McLaughlin, “Isolation of vibrations transmitted to a LIDAR sensor mounted on an agricultural vehicle to improve obstacle detection”, Canadian Biosystems Engineering, Vol. 55, pp. 233–242, 2013.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, “CARLA: An Open Urban Driving Simulator”, Proceedings of the 1st Conference on Robot Learning (CoRL), pp. 1–16, 2017.

H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia and G. Nejat, “A sim-to-real pipeline for deep reinforcement learning for autonomous robot navigation in cluttered rough terrain”, IEEE Robotics and Automation Letters, Vol. 6, No. 4, pp. 6569–6576, 2021.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun and M. Hutter, “Learning quadrupedal locomotion over challenging terrain”, Science Robotics, Vol. 5, No. 47, eabc5986, 2020.

T. Iwamoto and K. Shigematsu, “Tip-over prediction for hydraulic excavator during traveling using DNN with point cloud bird's-eye view”, Artificial Intelligence and Data Science, Vol. 5, No. 1, pp. 253–259, 2024 (in Japanese).

T. Ono, R. Eto and J. Yamakawa, “Forecasting vehicle accelerations using LSTM”, Mechanical Engineering Journal, Vol. 8, No. 3, 21-00045, 2021.

S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Computation, Vol. 9, No. 8, pp. 1735–1780, 1997.

S. Tang, Y. Zou, H. Zhang, Y. Zhang and X. Kong, “Application of CNN–LSTM Model for Vehicle Acceleration Prediction Using Car-following Behavior Data”, Journal of Advanced Transportation, Vol. 2024, 2442427, 2024.

AgileX Robotics, “Limo-Isaac-Sim”, GitHub repository, url{https://github.com/agilexrobotics/Limo-Isaac-Sim} (accessed Dec. 2, 2025).

ダウンロード

公開済


投稿日時: 2025-12-25 08:37:02 UTC

公開日時: 2026-01-07 06:18:33 UTC
研究分野
情報科学