Repulsive Influential Forces Induce Expansion of Information Radius
DOI:
https://doi.org/10.51094/jxiv.2166キーワード:
information radius、 mutual information、 repulsive interactions、 information geometry、 natural forces抄録
Mutual information (MI) and information radius provide complementary views on statistical dependence between interacting systems. Previous work has shown that attractive influential forces, aligned with the gradient of MI, induce a contraction of information radius under suitable regularity conditions. In this paper we develop the complementary theory of repulsive influential forces and prove that, under explicit regularity and sign assumptions on the force field, the information radius
r(t) = H(X_t) + H(Y_t) - 2 MI(X_t; Y_t)
evolves monotonically outward, in the sense that dr(t)/dt 竕・ 0 along any trajectory generated by such a repulsive influential force.
Within an information-theoretic dynamical framework, we decompose these forces into components that expand the marginals versus components that diminish MI, and express the resulting expansion rate in terms of variational identities for MI. This provides a rigorous expansion counterpart to contraction theorems for attractive influential forces and clarifies when informational repulsion can be realized by natural interactions. We discuss implications for phase separation, effective exclusion, and the organization of complex systems from an information-theoretic perspective.
利益相反に関する開示
The authors declare no potential conflict of interests.ダウンロード *前日までの集計結果を表示します
引用文献
Shannon, C. E. “A Mathematical Theory of Communication.” Bell System Technical Journal, 27, 379-423, 623–656 (1948).
Cover, T. M., Thomas, J. A. Elements of Information Theory, 2nd ed. Wiley, Hoboken (2006).
Amari, S., Nagaoka, H. Methods of Information Geometry. American Mathematical Society / Oxford University Press (2000).
Jaynes, E. T. “Information Theory and Statistical Mechanics.” Physical Review, 106(4), 620–630 (1957).
Schreiber, T. “Measuring Information Transfer.” Physical Review Letters, 85(2), 461–464 (2000).
Prokopenko, M., Lizier, J. T., Obst, O., Wang, D. L. “Relating Fisher Information to Order Parameters.” Physical Review E, 87, 062114 (2013).
Parrondo, J. M. R., Horowitz, J. M., Sagawa, T. “Thermodynamics of Information.” Nature Physics, 11, 131–139 (2015).
Seifert, U. “Stochastic Thermodynamics, Fluctuation Theorems and Molecular Machines.” Reports on Progress in Physics, 75, 126001 (2012).
Sagawa, T., Ueda, M. “Fluctuation Theorem with Information Exchange: Role of Correlations in Stochastic Thermodynamics.” Physical Review Letters, 109, 180602 (2012).
Jarzynski, C. “Nonequilibrium Equality for Free Energy Differences.” Physical Review Letters, 78(14), 2690–2693 (1997).
Crooks, G. E. “Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences.” Physical Review E, 60(3), 2721–2726 (1999).
Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed. Springer, Berlin (2009).
Risken, H. The Fokker–Planck Equation: Methods of Solution and Applications, 2nd ed. Springer, Berlin (1989).
Chaikin, P. M., Lubensky, T. C. Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (1995).
Hansen, J.-P., McDonald, I. R. Theory of Simple Liquids, 3rd ed. Academic Press, London (2006).
Onuki, A. Phase Transition Dynamics. Cambridge University Press, Cambridge (2002).
Debye, P., Hückel, E. “Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen.” Physikalische Zeitschrift, 24, 185–206 (1923).
Balescu, R. Statistical Dynamics: Matter Out of Equilibrium. Imperial College Press, London (1997).
Reichl, L. E. A Modern Course in Statistical Physics, 2nd ed. Wiley-VCH, Weinheim (1998).
Cover, T. M., Thomas, J. A. “Applications of Information Theory.” In Elements of Information Theory, 2nd ed., Wiley, Hoboken, pp. 13–15 (2006).
Touchette, H. “The Large Deviation Approach to Statistical Mechanics.” Physics Reports, 478, 1–69 (2009).
Spohn, H. Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991).
Prokopenko, M., Lizier, J. T., Price, D. C., Bucek, R. P., Zomaya, A. Y. “On Thermodynamic Interpretation of Transfer Entropy.” Entropy, 13(2), 518–537 (2011).
Lizier, J. T. The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses, Springer, Berlin (2013).
Mori, T. “Mutual Information Gradient Induces Contraction of Information Radius.”Jxiv (2025). https://doi.org/10.51094/jxiv.2005
Mori, T. “Natural Attractive Interactions and the Contraction of Information Radius.” Jxiv (2025). https://doi.org/10.51094/jxiv.2033
Mori, T. “Generative Operators of Natural Informational Forces: A Unified Framework for MI-based Dynamics.” Jxiv, submitted (2025).
ダウンロード
公開済
投稿日時: 2025-12-09 05:04:13 UTC
公開日時: 2025-12-15 01:31:56 UTC
ライセンス
Copyright(c)2025
Mori, Tsutomu
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。
