プレプリント / バージョン2

Minimal-Action Information Geometry: Unified Information Distance Dinfo

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.2073

キーワード:

information geometry、 minimal-length principle、 Hilbert space embedding、 Jensen-Shannon divergence、 representational redundancy

抄録

Distances are typically introduced as static measures of distinguishability between states. These quantities are often assumed to reflect an underlying metric or probabilistic structure, yet the fundamental relationship between distance and metric is rarely examined. This raises the question of whether distance should be viewed as a secondary quantity derived from a metric, or as a primary geometric concept from which metrics may emerge. Here, we revisit information geometry from a distance-first perspective, treating distance as the primary geometric object. As a concrete realization, we introduce a unified information distance, D_info, defined consistently with a least-length (variational) principle, and develop a geometric framework that takes this distance as fundamental. Within this framework, the metric tensor arises as the local infinitesimal expansion of the distance, enabling a coherent treatment of classical, quantum, and mixed systems within a single formalism. Importantly, distance is not assumed to encode physical interactions directly; rather, it acts as a structural constraint on admissible geometries and variational configurations. By elevating distance to a primary role, this approach reorganizes the foundations of information geometry and clarifies its interface with physical theory.

利益相反に関する開示

The authors declare no potential conflict of interests.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

N. N. Cencov, Statistical Decision Rules and Optimal Inference, American Mathematical Society, 1982.

S. Amari and H. Nagaoka, Methods of Information Geometry, American Mathematical Society, 2000.

D. Petz, “Monotone metrics on matrix spaces,” Linear Algebra and its Applications 244, 81–96 (1996).

A. Uhlmann, “The ‘transition probability’ in the state space of a *-algebra,” Reports on Mathematical Physics 9, 273–279 (1976).

C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, 1976.

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943).

R. Jozsa, “Fidelity for mixed quantum states,” Journal of Modern Optics 41, 2315–2323 (1994).

D. M. Endres and J. E. Schindelin, “A new metric for probability distributions,” IEEE Transactions on Information Theory 49, 1858–1860 (2003).

D. Virosztek, “The metric property of the quantum Jensen–Shannon divergence,” Advances in Mathematics 380, 107595 (2021).

E. P. Wigner and M. Yanase, “Information contents of distributions,” Proceedings of the National Academy of Sciences of the USA 49, 910–918 (1963).

D. Bures, “An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite W*-algebras,” Transactions of the American Mathematical Society 135, 199–212 (1969).

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Physical Review Letters 72, 3439–3443 (1994).

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley, 2006.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary ed., Cambridge University Press, 2010.

I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd ed., Cambridge University Press, 2017.

D. Petz and C. Ghinea, “Introduction to quantum Fisher information,” arXiv:1008.2417 (2010).

S. Amari, “Information geometry,” International Statistical Review 89, 250–273 (2021).

D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann–Finsler Geometry, Springer, 2000.

L. Ambrosio and N. Gigli, “A user’s guide to optimal transport,” in Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics 2062, Springer, 2013.

L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Unbalanced optimal transport: dynamic and Kantorovich formulations,” Journal of Functional Analysis 274, 3090–3123 (2018).

M. Liero, A. Mielke, and G. Savaré, “Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures,” Inventiones Mathematicae 211, 969–1117 (2018).

T. Séjourné, G. Peyré, and F.-X. Vialard, “Unbalanced optimal transport, from theory to numerics,” ESAIM: Mathematical Modelling and Numerical Analysis 57, 3141–3216 (2023).

ダウンロード

公開済


投稿日時: 2025-12-04 09:19:37 UTC

公開日時: 2025-12-15 01:29:58 UTC — 2026-02-05 10:15:50 UTCに更新

バージョン

改版理由

記述および解釈の明確化のための軽微な修正を行いました。主要な結果および結論に変更はありません。
研究分野
物理学