プレプリント / バージョン1

殺虫剤抵抗性の進化遅延手段としての複数剤同時使用と防除強度の最適化

##article.authors##

  • 須藤, 正彬 農研機構植物防疫研究部門

DOI:

https://doi.org/10.51094/jxiv.2067

キーワード:

進化遺伝学、 メタ個体群動態、 農薬、 プロビット分析、 ピラミディング

抄録

数ある抵抗性管理戦略のうち、本レビューでは作用機作の異なる複数剤の混用、および防除強度(薬剤濃度および圃場内の討ち漏らし率)の最適化に着目した。理論研究の比較・再解析により、これらの方策が進化を遅延させる原理を解明し、殺虫剤抵抗性管理における実現可能性を再評価した。混用の原理は歴史的にredundant kill(ある剤に抵抗性の個体も別の剤で排除)と呼称される。一方、Bt作物等で実用化された高薬量・保護区戦略は、抵抗性(ヘテロ)個体すら死亡する高濃度の有効成分を施用区内で用いつつ、害虫が遺伝子型に関わらず生存する保護区を隣接させる。保護区から流入する感受性個体が、施用区内で生存した抵抗性個体同士の交配確率を下げることで、抵抗性発達が遅延する。高薬量は殺虫剤では実現困難とされてきたが、剤のドーズレスポンスを明示的にモデル化した近年の研究は、単一成分の高薬量に匹敵する遅延効果を、混用であれば現実的なドーズ(単剤時の常用濃度の数倍以内)で実現できる可能性を示す。さらに混用では保護区に代えて圃場内の討ち漏らしだけでも、害虫個体の運命を「複数成分に曝露されて死亡する」か「どの剤にも曝露されない」かに二分し、抵抗性を遅延できるかもしれない。従来の高薬量・保護区戦略にこの「混用+討ち漏らし」を加えた、抵抗性アリルの「封じ込め」による積極的遅延は、ローテーション散布等による抵抗性発達の「先延ばし」と対比される管理方針である。

利益相反に関する開示

本論文に関して,開示すべき利益相反関連事項はない。

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Alexander HK, Martin G, Martin OY, Bonhoeffer S (2014) Evolutionary rescue: linking theory for conservation and medicine. Evol Appl 7:1161–1179. https://doi.org/10.1111/eva.12221

Alstad DN, Andow DA (1995) Managing the evolution of insect resistance to transgenic plants. Science 268:1894–1896. https://doi.org/10.1126/science.268.5219.1894

Ambec S, Desquilbet M (2012) Regulation of a spatial externality: refuges versus tax for managing pest resistance. Environ Resour Econ 51:79–104. https://doi.org/10.1007/s10640-011-9489-3

Andow DA, Alstad DN (1998) F2 screen for rare resistance alleles. J Econ Entomol 91:572–578

Andow DA, Ives AR (2002) Monitoring and adaptive resistance management. Ecol Appl 12:1378–1390. https://doi.org/10.1890/1051-0761(2002)012%255B1378:MAARM%255D2.0.CO;2

Andow DA, Pueppke SG, Schaafsma AW, et al (2016) Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 109:1–12

Asano S, Sakakibara H, Kitagaki T, et al (1973) Laboratory and field evaluation of the effectiveness of Bacillus thuringiensis products ‘Thuricide’ on some Lepidopterous pests of crucifers. Jpn J Appl Entomol Zool 17:91–96. https://doi.org/10.1303/jjaez.17.91

Asquith D (1961) Methods of delaying selection of acaricide resistant strains of the European red mite. J Econ Entomol 54:439–441

Beverton RJ, Holt SJ (1957) On the dynamics of exploited fish populations. Chapman & Hall, London

Bourne EC, Bocedi G, Travis JMJ, et al (2014) Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc R Soc B Biol Sci 281:20132795. https://doi.org/10.1098/rspb.2013.2795

Brown ZS (2018) Voluntary programs to encourage refuges for pesticide resistance management: Lessons from a quasi‐experiment. Am J Agric Econ 100:844–867. https://doi.org/10.1093/ajae/aay004

Campagne P, Kruger M, Pasquet R, et al (2013) Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca. PloS One 8:e69675

Caprio MA (2001) Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J Econ Entomol 94:698–705. https://doi.org/10.1603/0022-0493-94.3.698

Caprio MA (1998) Evaluating resistance management strategies for multiple toxins in the presence of external refuges. J Econ Entomol 91:1021–1031. https://doi.org/10.1093/jee/91.5.1021

Carrière Y, Brown ZS, Downes SJ, et al (2020) Governing evolution: A socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio 49:1–16. https://doi.org/10.1007/s13280-019-01167-0

Castle SJ, Merten P, Prabhaker N (2014) Comparative susceptibility of Bemisia tabaci to imidacloprid in field‐ and laboratory‐based bioassays. Pest Manag Sci 70:1538–1546. https://doi.org/10.1002/ps.3717

Comins HN (1986) Tactics for resistance management using multiple pesticides. Agric Ecosyst Environ 16:129–148

Comins HN (1977) The development of insecticide resistance in the presence of migration. J Theor Biol 64:177–197. https://doi.org/10.1016/0022-5193(77)90119-9

Coyne FP (1951) Proper use of insecticides. Br Med J 2:911

Crow JF, Kimura M (1970) An introduction to population genetics theory. In: An introduction to population genetics theory. Harper & Row, New York, Evanston and London

Curtis CF (1985) Theoretical models of the use of insecticide mixtures for the management of resistance. Bull Entomol Res 75:259–266. https://doi.org/10.1017/S0007485300014346

Curtis CF, Cook LM, Wood RJ (1978) Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol Entomol 3:273–287

Cutright CR (1959) Rotational use of spray chemicals in insect and mite control. J Econ Entomol 52:432–434

EPA (1998) Final report of the subpanel on Bacillus thuringiensis (Bt) plant-pesticides and resistance management

EPA (2017) Insect resistance management for Bt plant-incorporated protectants. https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/insect-resistance-management-bt-plant-incorporated. Accessed 15 July 2025

FAO (2012) Guidelines on prevention and management of pesticide resistance. Food and Agriculture Organization of the United Nations

Farias JR, Andow DA, Horikoshi RJ, et al (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

Gambhir N, Kamvar ZN, Higgins R, et al (2021) Spontaneous and fungicide-induced genomic variation in Sclerotinia sclerotiorum. Phytopathology 111:160–169. https://doi.org/10.1094/PHYTO-10-20-0471-FI

Gassmann AJ (2021) Resistance to Bt maize by western corn rootworm: effects of pest biology, the pest–crop interaction and the agricultural landscape on resistance. Insects 12:136

Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PloS One 6:e22629

Georghiou GP (1983) Management of resistance in arthropods. In: Pest resistance to pesticides. Springer, pp 769–792

Georghiou GP (1994) Principles of insecticide resistance management. Phytoprotection 75:51–59

Georghiou GP, Taylor CE (1977a) Operational influences in the evolution of insecticide resistance. J Econ Entomol 70:653–658. https://doi.org/10.1093/jee/70.5.653

Georghiou GP, Taylor CE (1977b) Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol 70:319–323. https://doi.org/10.1093/jee/70.3.319

Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726. https://doi.org/10.1146/annurev.ento.43.1.701

Gould F, Anderson A, Jones A, et al (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci 94:3519–3523

Gould F, Brown ZS, Kuzma J (2018) Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360:728–732. https://doi.org/10.1126/science.aar3780

Gressel J (2011) Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manag Sci 67:253–257. https://doi.org/10.1002/ps.2071

Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155. https://doi.org/10.1111/brv.12440

Helps JC, Paveley ND, van den Bosch F (2017) Identifying circumstances under which high insecticide dose increases or decreases resistance selection. J Theor Biol 428:153–167

Helps JC, Paveley ND, White S, van den Bosch F (2020) Determinants of optimal insecticide resistance management strategies. J Theor Biol 503:110383

Hirata K, Jouraku A, Kuwazaki S, et al (2017) Studies on Aphis gossypii cytochrome P450s CYP6CY22 and CYP6CY13 using an in vitro system. J Pestic Sci 42:97–104. https://doi.org/10.1584/jpestics.D17-006

Hobbs NP, Hastings I (2025) The impact of insecticide decay on the rate of insecticide resistance evolution for monotherapies and mixtures. Malar J 24:50. https://doi.org/10.1186/s12936-024-05147-y

Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16

IRAC (2024) IRAC mode of action classification scheme (Version 11.2, August 2024). http://www.irac-online.org/documents/moa-classification/. Accessed 30 Dec 2024

IRAC (2023) IRAC international insecticide mixture statement. https://irac-online.org/training-centre/resistance/mixtures/. Accessed 26 July 2025

Ives AR, Andow DA (2002) Evolution of resistance to Bt crops: directional selection in structured environments. Ecol Lett 5:792–801. https://doi.org/10.1046/j.1461-0248.2002.00392.x

Ives AR, Glaum PR, Ziebarth NL, Andow DA (2011) The evolution of resistance to two-toxin pyramid transgenic crops. Ecol Appl 21:503–515. https://doi.org/10.1890/09-1869.1

Ives AR, Paull C, Hulthen A, et al (2017) Spatio-temporal variation in landscape composition may speed resistance evolution of pests to Bt crops. PloS One 12:e0169167

Jørgensen LN, Van Den Bosch F, Oliver RP, et al (2017) Targeting fungicide inputs according to need. Annu Rev Phytopathol 55:181–203. https://doi.org/10.1146/annurev-phyto-080516-035357

Kaduskar B, Kushwah RBS, Auradkar A, et al (2022) Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat Commun 13:291

Levick B, South A, Hastings IM (2017) A two-locus model of the evolution of insecticide resistance to inform and optimise public health insecticide deployment strategies. PLoS Comput Biol 13:e1005327

Madgwick PG, Kanitz R (2023) Beyond redundant kill: A fundamental explanation of how insecticide mixtures work for resistance management. Pest Manag Sci 79:495–506. https://doi.org/10.1002/ps.7180

Madgwick PG, Kanitz R (2024) What is the value of rotations to insecticide resistance management? Pest Manag Sci 80:1671–1680. https://doi.org/10.1002/ps.7939

Madgwick PG, Kanitz R (2022) Modelling new insecticide-treated bed nets for malaria-vector control: how to strategically manage resistance? Malar J 21:102. https://doi.org/10.1186/s12936-022-04083-z

Madgwick PG, Tunstall T, Kanitz R (2024) Evolutionary rescue in resistance to pesticides. Proc R Soc B Biol Sci 291:20240805. https://doi.org/10.1098/rspb.2024.0805

Mani GS (1985) Evolution of resistance in the presence of two insecticides. Genetics 109:761–783

Mani GS (1989) Evolution of resistance with sequential application of insecticides in time and space. Proc R Soc Lond B Biol Sci 238:245–276

Martinez JC (2014) EPA Review of ABSTC’s 2011-2013 Corn Insect Resistance Management Compliance Assurance Program

Martinez JC, Caprio MA, Friedenberg NA (2018) Density dependence and growth rate: evolutionary effects on resistance development to Bt (Bacillus thuringiensis). J Econ Entomol 111:382–390

Matten SR, Frederick RJ, Reynolds AH (2012) United States Environmental Protection Agency insect resistance management programs for plant-incorporated protectants and use of simulation modeling. In: Wozniak CA, McHughen A (eds) Regulation of Agricultural Biotechnology: The United States and Canada. Springer Netherlands, Dordrecht, pp 175–267

Matten SR, Reynolds AH (2003) Current resistance management requirements for Bt cotton in the United States. J New Seeds 5:137–178. https://doi.org/10.1300/J153v05n02_04

May RM, Dobson AP (1986) Population dynamics and the rate of evolution of pesticide resistance. In: Pesticide resistance: strategies and tactics for management. pp 170–193

Mohammed-Awel J, Kopecky K, Ringland J (2007) A situation in which a local nontoxic refuge promotes pest resistance to toxic crops. Theor Popul Biol 71:131–146

Muir DA, World Health Organization (1977) Genetic aspects of developing insecticide resistance of malaria vectors

Onstad DW, Mitchell PD, Hurley TM, et al (2011) Seeds of change: corn seed mixtures for resistance management and integrated pest management. J Econ Entomol 104:343–352

Osakabe M, Imamura T, Nakano R, et al (2017) Combination of restriction endonuclease digestion with the ΔΔCt method in real-time PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite. Pestic Biochem Physiol 139:1–8

Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790. https://doi.org/10.1126/science.293.5536.1786

Peck SL, Ellner SP (1997) The effect of economic thresholds and life-history parameters on the evolution of pesticide resistance in a regional setting. Am Nat 149:43–63

Perlak FJ, Fuchs RL, Dean DA, et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

REX Consortium (2013) Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol 28:110–118. https://doi.org/10.1016/j.tree.2012.09.001

REX Consortium (2007) Structure of the scientific community modelling the evolution of resistance. PLoS One 2:e1275

REX Consortium (2010) The skill and style to model the evolution of resistance to pesticides and drugs. Evol Appl 3:375–390. https://doi.org/10.1111/j.1752-4571.2010.00124.x

Roush RT (1998) Two–toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc B Biol Sci 353:1777–1786

Roush RT (1989) Designing resistance management programs: How can you choose? Pestic Sci 26:423–441. https://doi.org/10.1002/ps.2780260409

Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

Shaw MW (2000) Models of the effects of dose heterogeneity and escape on selection pressure for pesticide resistance. Phytopathology 90:333–339

Sisterson MS, Antilla L, Carrière Y, et al (2004) Effects of insect population size on evolution of resistance to transgenic crops. J Econ Entomol 97:1413–1424

Slater R, Stratonovitch P, Elias J, et al (2017) Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies: Individual-based model to aid insecticide resistance management. Pest Manag Sci 73:1364–1372. https://doi.org/10.1002/ps.4456

South A, Hastings IM (2018) Insecticide resistance evolution with mixtures and sequences: a model-based explanation. Malar J 17:80. https://doi.org/10.1186/s12936-018-2203-y

South A, Lees R, Garrod G, et al (2020) The role of windows of selection and windows of dominance in the evolution of insecticide resistance in human disease vectors. Evol Appl 13:738–751. https://doi.org/10.1111/eva.12897

Sparks TC (2025) Insecticide mixtures—uses, benefits and considerations. Pest Manag Sci 81:1137–1144. https://doi.org/10.1002/ps.7980

Sparks TC, Storer N, Porter A, et al (2021) Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag Sci 77:2609–2619. https://doi.org/10.1002/ps.6254

Sudo M, Osakabe M (2022) freqpcr: Estimation of population allele frequency using qPCR ΔΔCq measures from bulk samples. Mol Ecol Resour 22:1380–1393. https://doi.org/10.1111/1755-0998.13554

Sudo M, Takahashi D, Andow DA, et al (2018) Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evol Appl 11:271–283. https://doi.org/10.1111/eva.12550

Sudo M, Yamanaka T, Miyai S (2019) Quantifying pesticide efficacy from multiple field trials. Popul Ecol 61:450–456

Sutherst RW, Comins HN (1979) The management of acaricide resistance in the cattle tick, Boophilus microplus (Canestrini)(Acari: Ixodidae), in Australia. Bull Entomol Res 69:519–537

Tabashnik BE (1989) Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 82:1263–1269. https://doi.org/10.1093/jee/82.5.1263

Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521. https://doi.org/10.1038/nbt.2597

Tabashnik BE, Carrière Y, Wu Y, Fabrick JA (2023a) Global perspectives on field-evolved resistance to transgenic Bt crops: a special collection. J Econ Entomol 116:269–274

Tabashnik BE, Croft BA (1982) Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ Entomol 11:1137–1144

Tabashnik BE, Fabrick JA, Carrière Y (2023b) Global patterns of insect resistance to transgenic Bt crops: the first 25 years. J Econ Entomol 116:297–309

Tabashnik BE, Mota-Sanchez D, Whalon ME, et al (2014) Defining terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol 107:496–507

Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

Takahashi D, Yamanaka T, Sudo M, Andow DA (2017) Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution. Evolution 71:1494–1503

Taylor CE, Georghiou GP (1979) Suppression of insecticide resistance by alteration of gene dominance and migration. J Econ Entomol 72:105–109

Van Den Bosch F, Paveley N, Shaw M, et al (2011) The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol 60:597–606. https://doi.org/10.1111/j.1365-3059.2011.02439.x

Von Döhren P, Haase D (2015) Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol Indic 52:490–497

Willrich MM, Leonard BR, Cook DR (2003) Laboratory and field evaluations of insecticide toxicity to stink bugs (Heteroptera: Pentatomidae). J Cotton Sci 7:156–163

Yamamura K (2021) Optimal rotation of insecticides to prevent the evolution of resistance in a structured environment. Popul Ecol 63:190–203

Yamanaka T, Kitabayashi S, Jouraku A, et al (2022) A feasibility trial of genomics‐based diagnosis detecting insecticide resistance of the diamondback moth. Pest Manag Sci 78:1573–1581. https://doi.org/10.1002/ps.6776

Yang F, Kerns D, Huang F (2015) Refuge-in-the-bag strategy for managing insect resistance to Bt maize. Outlooks Pest Manag 26:226–228

Yang F, Kerns DL, Head GP, et al (2014) A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm. PLoS One 9:e112962

Zhang W, Ricketts TH, Kremen C, et al (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260

山本敦司 (2012) 持続的な害虫制御に向けた殺虫剤抵抗性マネジメントの課題. 日本農薬学会誌 37:392–398. https://doi.org/10.1584/jpestics.W12-20

山村光司 (2016) 状態空間モデルによる昆虫個体数変動の解析における諸問題. 日本生態学会誌 66:339–350

森下正彦 (2019) 害虫の Bt 作物抵抗性に対する高濃度/保護区戦略. 日本応用動物昆虫学会誌 63:29–38

立川雅司 (2007) アメリカにおける遺伝子組換え作物規制の近年の動向: 連邦および州による規制と新たな課題. 農林水産政策研究 13:25–61

鈴木芳人 (2012) 殺虫剤抵抗性の発達をどう制御するか. 日本農薬学会誌 37:405–408. https://doi.org/10.1584/jpestics.W12-23

須藤正彬, 中野亮平, 土井誠, et al (2025) 気門封鎖剤で防除された土耕イチゴ上のナミハダニ(汎ケダニ目:ハダニ科)個体群における殺ダニ剤抵抗性遺伝子の頻度動態. 日本応用動物昆虫学会誌 69:141–150. https://doi.org/10.1303/jjaez.2025.141

ダウンロード

公開済


投稿日時: 2025-12-03 09:41:37 UTC

公開日時: 2025-12-09 06:15:58 UTC
研究分野
農学・食品科学