プレプリント / バージョン1

Dialectical Optimization: A Metaheuristic Inspired by Human Argumentation for Multi-objective Problems

##article.authors##

  • Ravikumar Shah Research and Development Department, VeBuIn, Japan
  • Tanvi Bhatt Research and Development Department, VeBuIn, Japan
  • parmar, Jay Research and Development Department, VeBuIn, Japan
  • Mayur Barbhaya Research and Development Department, VeBuIn, Japan

DOI:

https://doi.org/10.51094/jxiv.1950

キーワード:

Multi-objective Optimization、 Metaheuristics、 Swarm Intelligence、 Human Behavior、 Argumentation、 Dialectical Optimization、 Parameter-Free Algorithm

抄録

Multi-objective optimization problems, characterized by multiple conflicting objectives, are prevalent in science and engineering. While numerous metaheuristics have been proposed, most draw inspiration from simplified biological or physical processes. This paper introduces a fundamentally new class of algorithm, Dialectical Optimization for Multi-objective Problems, which is inspired by the human cognitive and social process of argumentation and consensus-building. We present the final, enhanced version of the algorithm, Unified DOMO with Argumentative Leap (U-DOMO+), a parameter-free metaheuristic designed for black-box MOOPs. The core of U-DOMO+ is a novel Dialectical Operator where solutions, termed ’Arguments’, refine their positions based on persuasion from elite arguments and skeptical exploration. To ensure robust performance, U-DOMO+ integrates a state of-the-art selection mechanism based on non-dominated sorting and crowding distance, and an Argumentative Leap mutation operator to maintain diversity. We demonstrate the algorithm’s effectiveness on the challenging ZDT benchmark problems, showing that U-DOMO+ successfully converges to the true Pareto front with excellent diversity, establishing it as a promising and novel contribution to the field of multi-objective optimization.

利益相反に関する開示

The authors declare that they have no conflicts of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Ran Cheng, Miqing Li, Ye Tian, Xingyi Zhang, Shengxiang Yang, Yaochu Jin, and Xin Yao. Benchmark functions for the cec’2017 competition on many-objective optimization. 01 2017. URL [https://dora.dmu.ac.uk/xmlui/handle/2086/13857](https://dora.dmu.ac.uk/xmlui/handle/2086/13857).

Michael Emmerich and André Deutz. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing, 17:585–609, 05 2018. ISSN 1567-7818, 1572-9796. doi: 10.1007/s11047-018-9685-y. URL [https://doi.org/10.1007/s11047-018-9685-y](https://doi.org/10.1007/s11047-018-9685-y).

Fred Glover, Ching-Chung Kuo, and Krishna S. Dhir. Heuristic algorithms for the maximum diversity problem. Journal of Information and Optimization Sciences, 19:109–132, 01 1998. ISSN 0252-2667, 2169-0103. doi: 10.1080/02522667.1998.10699366. URL [https://doi.org/10.1080/02522667.1998.10699366](https://doi.org/10.1080/02522667.1998.10699366).

Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita, and Yota Otachi. A framework to design approximation algorithms for finding diverse solutions in combinatorial problems. Proceedings of the AAAI Conference on Artificial Intelligence, 37:3968–3976, 06 2023. ISSN 2159-5399, 2374-3468. doi: 10.1609/aaai.v37i4.25511. URL [https://doi.org/10.1609/aaai.v37i4.25511](https://doi.org/10.1609/aaai.v37i4.25511).

Lester O. Hedges, H. Alicia Kim, and Robert L. Jack. Stochastic level-set method for shape optimisation. Journal of Computational Physics, 348:82-107, 07 2017. ISSN 0021-9991, 1090-2716. doi: 10.1016/j.jcp.2017.07.010. URL [https://doi.org/10.1016/j.jcp.2017.07.010](https://doi.org/10.1016/j.jcp.2017.07.010).

Shouyong Jiang, Marcus Kaiser, Shengxiang Yang, Stefanos Kollias, and Natalio Krasnogor. A scalable test suite for continuous dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 50:2814–2826, 02 2019. ISSN 2168-2267, 2168-2275. doi: 10.1109/tcyb.2019.2896021. URL [https://doi.org/10.1109/tcyb.2019.2896021](https://doi.org/10.1109/tcyb.2019.2896021).

Albert H.R. Ko, Robert Sabourin, Alceu S. Britto, and Luiz E. S. Oliveira. A classifier-free ensemble selection method based on data diversity in random subspaces. arXiv (Cornell University), 01 2014. doi: 10.48550/arxiv.1408.2889. URL [https://arxiv.org/abs/1408.2889](https://arxiv.org/abs/1408.2889).

Miqing Li, Tao Chen, and Xin Yao. How to evaluate solutions in pareto-based search-based software engineering: A critical review and methodological guidance, 11 2020. ISSN 0098-5589, 1939-3520, 2326-3881. URL [https://doi.org/10.1109/tse.2020.3036108](https://doi.org/10.1109/tse.2020.3036108).

Qiang Long, Changzhi Wu, Tingwen Huang, and Xiangyu Wang. A genetic algorithm for unconstrained multi-objective optimization. Swarm and Evolutionary Computation, 22:1–14, 01 2015a. ISSN 2210-6502, 2210-6510. doi: 10.1016/j.swevo.2015.01.002. URL [https://doi.org/10.1016/j.swevo.2015.01.002](https://doi.org/10.1016/j.swevo.2015.01.002).

Qiang Long, Changzhi Wu, Xiangyu Wang, Lin Jiang, and Jueyou Li. A multiobjective genetic algorithm based on a discrete selection procedure. Mathematical Problems in Engineering, 2015:1–17, 01 2015b. ISSN 1024-123X, 1026-7077, 1563-5147. doi: 10.1155/2015/349781. URL [https://doi.org/10.1155/2015/349781](https://doi.org/10.1155/2015/349781).

Ahmed Maghawry, Rania Hodhod, Yasser Omar, and Mohamed Kholief. An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft Computing, 25:389–405, 07 2020. ISSN 1432-7643, 1433-7479. doi: 10.1007/s00500-020-05149-3. URL [https://doi.org/10.1007/s00500-020-05149-3](https://doi.org/10.1007/s00500-020-05149-3).

Dhagash Mehta and Crina Groşan. A collection of challenging optimization problems in science, engineering and economics. 2022 IEEE Congress on Evolutionary Computation (CEC), 25:2697–2704, 05 2015. doi: 10.1109/cec.2015.7257223. URL [https://doi.org/10.1109/cec.2015.7257223](https://doi.org/10.1109/cec.2015.7257223).

Elliot Meyerson and Risto Miikkulainen. Discovering evolutionary stepping stones through behavior domination. Proceedings of the Genetic and Evolutionary Computation Conference, pages 139–146, 06 2017. doi: 10.1145/3071178.3071315. URL [https://doi.org/10.1145/3071178.3071315](https://doi.org/10.1145/3071178.3071315).

Shuhairie Mohammad, Ahmad Nor Kasruddin Nasir, Nor Maniha Abdul Ghani, Raja Kamil, Ahmad Azwan Abd Razak, Mohd Falfazli Mat Jusof, and Nurul Amira Mhd Rizal. Hybrid bacterial foraging sine cosine algorithm for solving global optimization problems. IOP Conference Series Materials Science and Engineering, 917:12081–12081, 09 2020. ISSN 1757-8981, 1757-899X. doi: 10.1088/1757-899x/917/1/012081. URL [https://doi.org/10.1088/1757-899x/917/1/012081](https://doi.org/10.1088/1757-899x/917/1/012081).

Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, and Frank Neumann. Computing High-Quality Solutions for the Patient Admission Scheduling Problem Using Evolutionary Diversity Optimisation, pages 250–264. Springer Science+Business Media, 01 2022. doi: 10.1007/978-3-031-14714-2_18. URL [https://doi.org/10.1007/978-3-031-14714-2_18](https://doi.org/10.1007/978-3-031-14714-2_18).

Effanga Effanga Okon. On technique for generating pareto optimal solutions of multi-objective linear programming problems. Science Journal of Applied Mathematics and Statistics, 7:15–15, 01 2019. ISSN 2376-9491, 2376-9513. doi: 10.11648/j.sjams.20190702.12. URL [https://doi.org/10.11648/j.sjams.20190702.12](https://doi.org/10.11648/j.sjams.20190702.12).

Alberto Pajares, Xavier Blasco, J. M. Herrero, and Gilberto Reynoso-Meza. A multiobjective genetic algorithm for the localization of optimal and nearly optimal solutions which are potentially useful: nevmoga. Complexity, 2018, 01 2018. ISSN 1076-2787, 1099-0526. doi: 10.1155/2018/1792420. URL [https://doi.org/10.1155/2018/1792420](https://doi.org/10.1155/2018/1792420).

Erickson Puchta, Priscilla Bassetto, Lucas Henrique Biuk, Marco A. Itaborahy Filho, Attílio Converti, M. Kaster, and Hugo Valadares Siqueira. Swarm-inspired algorithms to optimize a nonlinear gaussian adaptive pid controller. Energies, 14:3385–3385, 06 2021. ISSN 1996-1073. doi: 10.3390/en14123385. URL [https://doi.org/10.3390/en14123385](https://doi.org/10.3390/en14123385).

Alexander Thebelt, Calvin Tsay, Robert M. Lee, Nathan Sudermann-Merx, D. Walz, Thomas G. Tranter, and Ruth Misener. Multi-objective constrained optimization for energy applications via tree ensembles. Applied Energy, 306:118061–118061, 10 2021. ISSN 0306-2619, 1872-9118. doi: 10.1016/j.apenergy.2021.118061. URL [https://doi.org/10.1016/j.apenergy.2021.118061](https://doi.org/10.1016/j.apenergy.2021.118061).

Shuxin Wang, Yingcai Zheng, Li Cao, and Maoren Xiong. Comprehensive adaptive enterprise optimization algorithm and its engineering applications. Biomimetics, 10:302–302, 05 2025. ISSN 2313-7673. doi: 10.3390/biomimetics10050302. URL [https://doi.org/10.3390/biomimetics10050302](https://doi.org/10.3390/biomimetics10050302).

Xin Xia, Jie Ji, Chaoshun Li, Xiaoming Xue, Xiaolu Wang, and Chu Zhang. Multiobjective optimal control for hydraulic turbine governing system based on an improved mogwo algorithm. Complexity, 2019, 01 2019. ISSN 1076-2787, 1099-0526. doi: 10.1155/2019/3745924. URL [https://doi.org/10.1155/2019/3745924](https://doi.org/10.1155/2019/3745924).

Huarong Xu, Qianwei Deng, Zhiyu Zhang, and Sijie Lin. A hybrid differential evolution particle swarm optimization algorithm based on dynamic strategies. Scientific Reports, 15, 02 2025. ISSN 2045-2322. doi: 10.1038/s41598-024-82648-5. URL [https://doi.org/10.1038/s41598-024-82648-5](https://doi.org/10.1038/s41598-024-82648-5).

Jiajun Yu, Yizhen Zheng, Huan Yee Koh, Shirui Pan, Tianyue Wang, and Haishuai Wang. Collaborative expert llms guided multi-objective molecular optimization. 01 2025. doi: 10.48550/ARXIV.2503.03503. URL [https://arxiv.org/abs/2503.03503](https://arxiv.org/abs/2503.03503).

Guangyi Zhang and Aristides Gionis. Maximizing diversity over clustered data. arXiv (Cornell University), 01 2020. doi: 10.48550/arxiv.2001.03050. URL [https://arxiv.org/abs/2001.03050](https://arxiv.org/abs/2001.03050).

Shuhan Zhang, Shengsheng Wang, Ruyi Dong, Kai Zhang, and Xiaohui Zhang. A multi-strategy improved outpost and differential evolution mutation marine predators algorithm for global optimization. Arabian Journal for Science and Engineering, 48:10493–10516, 02 2023. ISSN 2191-4281, 2193-567X. doi: 10.1007/s13369-023-07683-2. URL [https://doi.org/10.1007/s13369-023-07683-2](https://doi.org/10.1007/s13369-023-07683-2).

ダウンロード

公開済


投稿日時: 2025-11-14 22:49:33 UTC

公開日時: 2025-11-26 00:17:54 UTC
研究分野
一般工学・総合工学