プレプリント / バージョン2

The Revision of Schizosaccharomycetaceae

##article.authors##

  • Huong Thi Lan Vu Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCM City
  • Pattaraporn Yukphan BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Agency (NSTDA)
  • Somboon Tanasupawat Faculty of Pharmaceutical Sciences, Chulalongkorn Universit
  • Kozaburo Mikata Institute for Fermentation, Osaka
  • Yamada, Yuzo Faculty of Agriculture, Shizuoka University

DOI:

https://doi.org/10.51094/jxiv.188

キーワード:

Schizosaccharomyces、 Octosporomyces、 Hasegawaea、 fission yeasts

抄録

Although the genus Hasegawaea was introduced along with the recognition of the genus Octosporomyces in the classification of fission yeasts, the two additional genera were neither accepted nor recognized. However, the genus Schizosaccharomyces sensu Kurtzman et Robnett was taxonomically heterogeneous-natured and corresponded to a higher-ranked taxon, i.e., a monotypic family. Thus, the following three genera were confirmed in the family Schizosaccharomycetaceae. The genus Schizosaccharomyces sensu stricto was comprised of Schizosacchromyces pombe,the genus Octosporomyces was of the three species, Schizosaccharomyces octosporus, Schizosaccharomyces osmophilus, and Schizosaccharomyces cryophilus as Octosporomyces octosporus, Octosporomyces osmophilus, and Octosporomyces cryophilus, and the genus Hasegawaea was of Schizosaccharomyces japonicus as Hasegawaea japonica. In conclusion, the precise classification of microorganisms will not be able to be expected in the generic designation without the presence of taxonomic homogeneous-natured taxa. The phylogenetic distances have to be absolutely considered. Namely, the longer the distances are, the more taxonomic heterogeneous natures will be increased in the resulting genus.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Aoki K, Furuya K, Niki H. Schizosaccharomyces japonicus: A distinct dimorphic yeast among the fission yeasts. Cold Spring Harb Protoc 2017; doi: 10.1101/pdb. top082651.

Brysch-Herzberg M, Tobias A, Seidel M, Wittmann R, Wohlmann E, Fischer R, Dlauchy D, Péter G. Schizosaccharomyces osmophilus sp. nov., an osmophilic fission yeast occurring in bee bread of different solitary bee species. FEMS Yeast Res 2019; 19: foz038.

De Carvalho M. wft: killing gametes for more than 110 million years. The Open University 2020.

Helston M, Box JA, Tang W, Baumann P. Schizosaccharomyces cryophilus sp. nov., a new species of fission yeast. FEMS Yeast Res 2010; 10: 779-786.

Kaino,T, Tonoko K, Mochizuki S, Takashima Y, Kawamukai M. Schizosaccharomyces japonicus has low levels of CoQ10 synthesis, respiration deficiency and efficient ethanol production. Biosci Biotechnol Biochem 2018; 82: 1031-1042.

Kurtzman CP. Phylogenetic circumscription of Saccharomyces and Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 2003; 4: 233-245.

Kurtzman CP, Robnett CJ. Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 1991; 7: 61-72.

Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73: 331-371.

Liu Y, Leigh JW, Brinkmann H, Cushion MT. Rodriguez-Ezpeleta N, Philippe H, Lang BF. Phylogenomic analyses support the monophyly of Taphrinomycotina, including Schizosaccharomyces fission yeasts. Mol Biol Evol 2009; 26, 27-34.

Mikata M, Banno I. Surface structures of ascopsores of the genus Schizosaccharomyces. IFO Res Commun 1987; 13: 45-51.

Mikata K, Yamada Y. The ubiquinone system of Hasegawaea japonica (Yukawa et Maki) Yamada et Banno: A new method for identifying ubiquinone homologs from yeast cells. IFO Res Commun 1999; 19: 41-46.

Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, Young SK, Furuya K. et al. Comparative functional genomics of the fission yeasts. Science 2011; 332 (6032): 930-936. doi:10.1126/science.1203357.

Sipiczki M, Takeo K, Yamaguchi M, Yoshida S, Miklos I. Environmentally controlled dimorphic cycle in a fission yeast. Microbiology 1998; 144: 1319-1330.

Vaughan-Martini A, Martini A. Schizosaccharomyces Lindner (1893) In: Kurtzman CP Fell JW Boekhout T (ed). The Yeasts: A Taxonomic Study, 5th edition. vol. 2. London: Elsevier, 2011, p. 779-784.

Vu HTL, Yukphan P, Tanasupawat S, Yamada Y. The revision of the family Lipo-mycetaceae. JSMRS 27th Ann Meet 2021; Gen Lect O-7: p. 15; on line presentation, p. 1-10.

Yamada Y, Banno I. Hasegawaea gen. nov., an ascosporogenous yeast genus for the organisms whose asexual reproduction is by fission and whose ascospores have smooth surfaces without papillae and which are characterized by the absence of coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. J Gen App. Microbiol 1987; 33: 295-298.

Yamada Y Banno I. A proposal to divide the genus Schizosaccharomyces Lindner sensu Yarrow into three separate genera. Yeast; 1989: 5, S393-S398.

Yamada Y, Arimoto M, Kondo K. Coenzyme Q system in the classification of the ascosporogenous yeast genus Schizosaccharomyces and the yeast-like genus Endomyces. J Gen Appl Microbiol 1973; 19: 353-358.

Yamada Y, Asahi T, Maeda K, Mikata K. The phylogenetic relationships of fission yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: The recognition of Hasegawaea Yamada et Banno along with Schizosaccharomyces Lindner. Bull Fac Agric Shizuoka Univ 1993; 43: 29-38.

. Yamada Y, Vu HTL, Yukphan P, Tanasupawat S, Mikata K. The revision of Schizosaccharomycetaceae. JSMRS 28th Ann Meet 2022; Gen Lect O-2: p. 22.

ダウンロード

公開済


投稿日時: 2022-10-13 14:14:53 UTC

公開日時: 2022-10-17 23:49:45 UTC — 2022-11-01 05:14:55 UTCに更新

バージョン

改版理由

The previous manuscript was to get MycoBank numbers, and it was sent to MycoBank Office. After judgments of the manuscript, two MycoBank numbers were given to validate the names of two new combinations. Herewith, the new manuscript including MycoBank numbers is submitted.
研究分野
生物学・生命科学・基礎医学