超大規模離散空間におけるFujita-Ogawaモデルの効率的解法
DOI:
https://doi.org/10.51094/jxiv.187キーワード:
Fujita-Ogawa (1982) モデル、 ロジット・モデル、 最適輸送問題、 バランシング法、 加速勾配法抄録
本研究では,超大規模離散空間におけるFujita-Ogawa (FO) モデルの 効率的数値解法を提案する. 具体的にはまず,FOモデルの 立地主体(家計と企業)の選択行動にランダム効用最大化を仮定し, FOモデルを確率的枠組み(ロジット・モデル)に拡張する. 続いて,この確率的FOモデルに対して等価最適化問題が構築できることを示す. 次に,この等価最適化問題は, 企業の立地分布を決定するマスター問題と,家計の通勤地・居住地分布を決定するサブ問題 からなる階層的最適化問題に変換できることを明らかにする. ここで,サブ問題はエントロピー正則化項付きの最適輸送問題, マスター問題は制約条件付き非凸計画問題の数理構造を持つ. そして,これら数理構造を活かし,サブ問題に対してはバランシング法を, マスター問題に対しては加速勾配法を適用する階層的最適化アルゴリズムを構築する. 最後に,数値実験により提案手法の効率性・正確性を示す.
ダウンロード *前日までの集計結果を表示します
引用文献
Fujita, M. and Ogawa, H.: Multiple equilibria and structural transition of non-monocentric urban configurations, Regional science and urban economics, Vol.12, No.2, pp.161-196, 1982.
Ahlfeldt, G. M., Redding, S. J., Sturm, D. M., and Wolf, N.: The economics of density: Evidence from the berlin wall, Econometrica: journal of the Econometric Society, Vol.83, No.6, pp.2127-2189, 2015.
Monte, F., Redding, S. J., and Rossi-Hansberg, E.: Commuting, migration, and local employment elasticities, The American economic review, Vol.108, No.12, pp.3855-3890, 2018.
Heblich, Redding, and Sturm: The making of the modern metropolis: evidence from london, The Quarterly Journal of Economics, 2020.
Zhang, W. and Zhang, M.: Incorporating land use and pricing policies for reducing car dependence: Analytical framework and empirical evidence, Urban studies, Vol.55, No.13, pp.3012-3033, 2018.
Zhang, W. and Kockelman, K. M.: Congestion pricing effects on firm and household location choices in monocentric and polycentric cities, Regional science and urban economics, Vol.58, pp.1-12, 2016.
Zhang, W. and Kockelman, K. M.: Optimal policies in cities with congestion and agglomeration externalities: Congestion tolls, labor subsidies, and place-based strategies, Journal of urban economics, Vol.95, pp.64-86, 2016.
秋本克哉, 赤松隆: 二次元空間 fujita and ogawa (1982) モデルの数値解法の開発, 土木計画学研究・講演集, Vol.56, pp.11, 2017.
清水廉, 長江剛志: 二次元空間を対象とした大規模な二主体集積経済モデルの効率的解法, 土木学会論文集 D3(土木計画学), Vol.76, No.3, pp.223-235, 2020.
Heikkila, E. J. and Wang, Y.: Fujita and ogawa revisited: An Agent-Based modeling approach, Environment and planning. B, Planning & design, Vol.36, No.4, pp.741-756, 2009.
Delloye, J., Peeters, D., and Thomas, I.: On the morphology of a growing city: A heuristic experiment merging static economics with dynamic geography, PloS one, Vol.10, No.8, pp.e0135871, 2015.
Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, Vol.7, No.3, pp.200-217, 1967.
Cuturi: Sinkhorn distances: Lightspeed computation of optimal transport, Advances in neural information processing systems, 2013.
Ghadimi, S. and Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming, Mathematical Programming. A Publication of the Mathematical Programming Society, Vol.156, No.1-2, pp.59-99, 2016.
Ogawa, H. and Fujita, M.: Nonmonocentric urban configurations in a Two-Dimensional space, Environment & planning A, Vol.21, No.3, pp.363-374, 1989.
Fujita, M.: A monopolistic competition model of spatial agglomeration: Differentiated product approach, Regional science and urban economics, Vol.18, No.1, pp.87-124, 1988.
Lucas, R. E. and Rossi-Hansberg, E.: On the internal structure of cities, Econometrica: journal of the Econometric Society, Vol.70, No.4, pp.1445-1476, 2002.
Berliant, M., Peng, S.-K., and Wang, P.: Production externalities and urban configuration, Journal of economic theory, Vol.104, No.2, pp.275-303, 2002.
Berliant, M. and Wang, P.: Urban growth and subcenter formation: A trolley ride from the staples center to disneyland and the rose bowl, Journal of urban economics, Vol.63, No.2, pp.679-693, 2008.
大澤実: 集積経済モデルの数理解析とその周辺, 土木学会論文集 D3(土木計画学), Vol.74, No.5, pp.I 19-I 36, 2018.
中村孝一, 高山雄貴: 企業と家計の相互作用を考慮した都心形成モデルの開発, 土木学会論文集 D3(土木計画学), Vol.74, No.5, pp.I 555-I 569, 2018.
Osawa, M. and Akamatsu, T.: Equilibrium refinement for a model of non-monocentric internal structures of cities: A potential game approach, Journal of economic theory, Vol.187, pp.105025, 2020.
山口修平, 赤松隆: 複数都心形成モデルの確率安定性解析-線分都市 vs. 円周都市-, 土木学会論文集 D3 (土木計画学), Vol.75, No.2, pp.109-127, 2019.
土木学会: 交通ネットワークの均衡分析-最新の理論と解法, 丸善, 1998.
Lamond, B. and Stewart, N. F.: Bregman's balancing method, Transportation Research Part B: Methodological, Vol.15, No.4, pp.239-248, 1981.
Sinkhorn, R. and Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices, Pacific Journal of Mathematics, Vol.21, No.2, pp.343-348, 1967.
Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k), Doklady an ussr, Vol.269, pp.543-547, 1983.
Wang, W. and Lu, C.: Projection onto the capped simplex, arXiv, http://arxiv.org/abs/1503.01002, 2015.
Nishioka, A. and Kanno, Y.: Accelerated projected gradient method with adaptive step size for compliance minimization problem, JSIAM Letters, Vol.13, pp.33-36, 2021.
ダウンロード
公開済
投稿日時: 2022-10-14 08:06:33 UTC
公開日時: 2022-10-18 02:19:14 UTC
バージョン
- 2022-12-13 04:52:56 UTC(2)
- 2022-10-18 02:19:14 UTC(1)
改版理由
ライセンス
Copyright(c)2022
酒井, 高良
涌井, 優尚
赤松, 隆
この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。