プレプリント / バージョン1

A Dynamical Model of Subjectivity

Toward an Integrative Computational Architecture for the Mind

##article.authors##

  • Imaizumi, Takeo Independent Researcher

DOI:

https://doi.org/10.51094/jxiv.1794

キーワード:

Discrete Dynamical Systems、 Bifurcation Theory、 Mathematical Psychology、 Computational Psychiatry、 Cognitive Architecture、 Free Energy Principle (FEP)、 Perceptual Control Theory (PCT)

抄録

Subjective experience unfolds continuously yet also makes discrete, qualitative jumps. To model this phenomenological duality, we propose a discrete dynamical system. This yields a control-theoretic framework governed by a Mind Topography Map (MTM) of affective gain G and cognitive bias μ. The MTM's structure is isomorphic to a cusp catastrophe. Allowing negative gain (G<0) generates error-amplifying loops that produce bistability, hysteresis, and period-doubling bifurcations. A key insight is that psychological stability is implementation-dependent. This analysis reveals a distinct zero-inertia state: the Ideal Dynamical Equilibrium (IDE). To account for the mind's complexity, we extend the model into a multidimensional framework termed Structural Gain–Bias Dynamics (SGBD). This extension resolves a fundamental computational duality of mental life: how stable psychological "states" can coexist with persistent "processes" such as rumination. We show that this computational duality emerges from the interaction matrix's symmetric (state-seeking) and skew-symmetric (process-sustaining) components. We term this principle Cognitive Phase Dynamics (CPD). To ground the framework empirically, we introduce two dimensionless indicators: DIDE to quantify the balance between inertia and responsiveness, and DCPD to distinguish states from processes. Supported by these metrics, our model serves as a computational bridge between the physics of the Free Energy Principle (FEP) and the teleology of Perceptual Control Theory (PCT). It thus offers a tractable and testable program for the future of mathematical psychology and computational psychiatry.

利益相反に関する開示

The author declares no conflict of interest.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Baars, B.J., 1988. A Cognitive Theory of Consciousness. Cambridge University Press.

Chalmers, D.J., 1995. Facing up to the problem of consciousness. Journal of Consciousness Studies 2,200–219.

Dehaene, S., 2014. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. Viking.

Dehaene, S., Changeux, J.P., 2011. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227. doi:10.1016/j.neuron.2011.03.018.

Franklin, G.F., Powell, J.D., Workman, M.L., 1998. Digital Control of Dynamic Systems. 3rd ed., Addison-Wesley, Menlo Park, CA.

Freeman, W.J., 2000. How Brains Make Up Their Minds. Columbia University Press, New York.

Freud, S., 1923. The Ego and the Id. International Psycho-Analytical Press, Vienna. Translated by Joan Riviere.

Friston, K., 2010. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11, 127–138. doi:10.1038/nrn2787.

van Gelder, T., 1995a. Dynamical hypotheses in cognitive science, in: Port, R.F., van Gelder, T. (Eds.), Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge, MA, pp. 421–446.

van Gelder, T., 1995b. What might cognition be, if not computation? The Journal of Philosophy 92, 345–381. doi:10.2307/2940963.

Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. volume 42 of Applied Mathematical Sciences. Springer, New York. doi:10.1007/978-1-4612-1140-2.

James, W., 1890. ThePrinciplesofPsychology. HenryHoltandCompany, NewYork. doi:10.1037/11059-000.

Kahneman, D., 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.

Kuznetsov, Y.A., 2004. Elements of Applied Bifurcation Theory. volume 112 of Applied Mathematical Sciences. 3rd ed., Springer, New York. doi:10.1007/b98848.

Melloni, L., Mudrik, L., Pitts, M., Koyano, K.A., Gde, B.G., Tsuchiya, N., Koch, C., Tononi, G., Dehaene, S., Saad, Z.S., 2023. An adversarial collaboration to critically evaluate theories of consciousness. Nature Neuroscience 26, 1831–1843. doi:10.1038/s41593-023-01436-7.

Powers, W.T., 1973. Behavior: The Control of Perception. Aldine, Chicago.

Russell, J.A., 1980. A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178. doi:10.1037/h0077714.

Strogatz, S.H., 2018. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. 2nd ed., CRC Press / Taylor & Francis, Boca Raton, FL. doi:10.1201/9780429492563.

Tanaka, H.R., Krakauer, J.W., Sejnowski, T.J., 2019. The cognitive geometry of abstraction. Trends in Cognitive Sciences 23, 911–924. doi:10.1016/j.tics.2019.09.004.

Tang, Y.Y., Hölzel, B.K., Posner, M.I., 2015. The neuroscience of mindfulness meditation. Nature Reviews Neuroscience 16, 213–225. doi:10.1038/nrn3916.

Thom, R., 1975. Structural Stability and Morphogenesis: An Outline of a General Theory of Models. W. A. Benjamin, Reading, MA. Translated from the French by D. H. Fowler.

Tononi, G., 2004. An information integration theory of consciousness. BMC Neuroscience 5, 42. doi:10. 1186/1471-2202-5-42.

Zeeman, E.C., 1977. Catastrophe Theory: Selected Papers, 1972-1977. Addison-Wesley Publishing Company, Reading, MA.

ダウンロード

公開済


投稿日時: 2025-10-24 02:17:38 UTC

公開日時: 2025-11-04 07:17:09 UTC
研究分野
心理学・教育学