プレプリント / バージョン1

Two complementary forest-originated Gigaspora spp. shifted shoot-to-root ratio for growth improvement in Cryptomeria japonica seedlings

Gigaspora AMF shifted shoot-to-root ratio in Cryptomeria japonica

##article.authors##

  • DJOTAN, Akotchiffor Kevin Geoffroy Mie University, Graduate School of Bioresources, Department of Sustainable Resources Sciences https://orcid.org/0000-0002-3726-9826
  • Yosuke Matsuda Mie University, Graduate School of Bioresources, Department of Sustainable Resources Sciences https://orcid.org/0000-0002-7001-3101
  • Norihisa Matsushita The University of Tokyo, Graduate School of Agricultural and Life Sciences, Department of Forest Sciences, Laboratory of Forest Botany
  • Kenji Fukuda The University of Tokyo, Graduate School of Agricultural and Life Sciences, Department of Forest Sciences, Laboratory of Forest Botany

DOI:

https://doi.org/10.51094/jxiv.1773

キーワード:

Forest AMF、 Inoculation assays、 Gigaspora rosea、 Gigaspora margarita、 AMF cohabitation

抄録

Arbuscular mycorrhizal fungi (AMF) are potential bioinoculants to grow healthy plants in healthy soils. However, most available AMF isolates originated from nonforest environments and AMF contributions to tree seedlings remain unclear. Here, our objective was to clarify the functions of forest-inhabiting AMF in tree seedling production. To achieve this, we first identified two Gigaspora AMF (LFB-4 and LFB-A1) previously isolated from Cryptomeria japonica (Cupressaceae) trees and characterized them using morphological and molecular analyzes. We then carried out inoculation assays to clarify the cohabitation and functions of LFB-4 and LFB-A1 in C. japonica seedlings. We identified LFB-4 and LFB-A1 as Gigaspora rosea and Gigaspora margarita, respectively. They produced spores inside host root cells, simultaneously developed multiple germ tubes during germination, and showed presymbiotic sporulation. LFB-A1 produces spores as large as 500 µm in diameter. LFB-4 and LFB-A1 were both beneficial AMF with different functions and complementary effects on the growth of C. japonica seedlings. In their cohabitation, while LFB-4 boosted water uptake and height growth, LFB-A1 improved biomass production. Together, they encouraged carbon release into the soil and increased the shoot-to-root biomass ratio for faster seedling growth, although without increasing root colonization. We concluded that, despite erratic root colonization, G. rosea and G. margarita worked synergistically to improve the growth of C. japonicaseedlings by modulating root development, likely for carbon acquisition. Root colonization assessed by microscopy or metabarcoding may overlook AMF functions.

利益相反に関する開示

The authors declare that they have no conflicts of interest

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J., & Watson, M. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 12, 13–21. https://doi.org/10.1111/J.1461-0248.2008.01254.X

Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research.

Bullington, L. S., Lekberg, Y., & Larkin, B. G. (2021). Insufficient sampling constrains our characterization of plant microbiomes. Scientific Reports, 11, 1–14. https://doi.org/10.1038/s41598-021-83153-9

Bunn, R. A., Corrêa, A., Joshi, J., Kaiser, C., Lekberg, Y., Prescott, C. E., Sala, A., & Karst, J. (2024). What determines transfer of carbon from plants to mycorrhizal fungi? New Phytologist, 244, 1199–1215. https://doi.org/10.1111/NPH.20145

Cleveland, W. S., Grosse, E., & Shyu, W. M. (1992). Local regression models. In H. T. J. Chambers J.M. (Ed.), Statistical Models in S (pp. 608). Wadsworth & Brooks / Cole.

Djotan, A. K. G. (2024). Diversity and ecology of arbuscular mycorrhizal fungi communities in Cryptomeria japonica and Chamaecyparis obtusa [University of Tokyo]. Tokyo.

Djotan, A. K. G., Matsushita, N., & Fukuda, K. (2022). Amplicon sequencing reveals the arbuscular mycorrhizal fungal community composition in Cryptomeria japonica at one local site. Journal of Forest Research, 27, 399–407. https://doi.org/10.1080/13416979.2022.2043516

Djotan, A. K. G., Matsushita, N., & Fukuda, K. (2023). Paired root-soil samples and metabarcoding reveal taxon-based colonization strategies in arbuscular mycorrhizal fungi communities in Japanese cedar and cypress stands. Microbial Ecology, 86, 2133–2146. https://doi.org/10.1007/s00248-023-02223-9

Djotan, A. K. G., Matsushita, N., & Fukuda, K. (2024a). Within-site variations in soil physicochemical properties explained the spatiality and cohabitation of arbuscular mycorrhizal fungi in the roots of Cryptomeria japonica. Microbial Ecology, 87, 136. https://doi.org/10.1007/s00248-024-02449-1

Djotan, A. K. G., Matsushita, N., & Fukuda, K. (2024b). Year-round dynamics of arbuscular mycorrhizal fungi communities in the roots and surrounding soils of Cryptomeria japonica. Mycorrhiza, 34, 119–130. https://doi.org/10.1007/s00572-024-01143-x

Djotan, A. K. G., Matsushita, N., Matsuda, Y., & Fukuda, K. (2025). The similarity between arbuscular mycorrhizal fungi communities of trees and nearby herbs in a planted forest exhibited within-site spatial variation patterns explained by local soil conditions. Mycorrhiza, 35, 21. https://doi.org/10.1007/s00572-025-01197-5

Engelmoer, D. J. P., Behm, J. E., & Toby Kiers, E. (2014). Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology, 23, 1584–1593. https://doi.org/10.1111/MEC.12451

Frew, A. (2025). What does colonisation tell us? Revisiting the functional outcomes of root colonisation by arbuscular mycorrhizal fungi. New Phytologist, 247, 1572–1578. https://doi.org/10.1111/nph.70284

Harrell, F. E. (2025). Hmisc: Harrell Miscellaneous R package. In (Version 5.2-3) Hmisc

Hart, M. M., Aleklett, K., Chagnon, P. L., Egan, C., Ghignone, S., Helgason, T., Lekberg, Y., Öpik, M., Pickles, B. J., & Waller, L. (2015). Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytologist, 207, 235–247. https://doi.org/10.1111/NPH.13340

Hart, M. M., & Reader, R. J. (2002). Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 153, 335–344. https://doi.org/10.1046/J.0028-646X.2001.00312.X

Hart, M. M., & Reader, R. J. (2004). Do arbuscular mycorrhizae fungi recover from soil disturbance differently. Tropical Ecology, 45, 97–111.

Hodge, A., & Storer, K. (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 386, 1–19. https://doi.org/10.1007/s11104-014-2162-1

Hodkinson, T. R., & Murphy, B. R. (2019). Endophytes for a growing world. In T. R. Hodkinson, F. M. Doohan, M. J. Saunders, & B. R. Murphy (Eds.), Endophytes for a growing world (pp. 3–22). Cambridge University Press.

Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C., Karst, J., Koide, R. T., Pringle, A., Zabinski, C., Bever, J. D., Moore, J. C., Wilson, G. W. T., Klironomos, J. N., & Umbanhowar, J. (2010). A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13, 394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x

Jansa, J., Smith, F. A., & Smith, S. E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177, 779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x

Johnson, N. C., Graham, J. H., & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575–585. https://doi.org/10.1046/J.1469-8137.1997.00729.X

Koide, R. T. (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist, 147, 233–235. https://doi.org/10.1046/J.1469-8137.2000.00710.X

Koziol, L., McKenna, T. P., & Bever, J. D. (2024). Meta-analysis reveals globally sourced commercial mycorrhizal inoculants fall short. New Phytologist, 246, 821–827. https://doi.org/10.1111/NPH.20278

Krüger, M., Stockinger, H., Krüger, C., & Schüßler, A. (2009). DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183, 212–223. https://doi.org/10.1111/j.1469-8137.2009.02835.x

Kuila, D., & Ghosh, S. (2022). Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences, 3, 100107. https://doi.org/10.1016/j.crmicr.2022.100107

Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65, 339–349. https://doi.org/10.1111/J.1574-6941.2008.00531.X

Lekberg, Y., Vasar, M., Bullington, L. S., Sepp, S. K., Antunes, P. M., Bunn, R., Larkin, Beau G., & Öpik, M. (2018). More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytologist, 220, 971–976. https://doi.org/10.1111/NPH.15035

Marro, N., Grilli, G., Soteras, F., Caccia, M., Longo, S., Cofré, N., Borda, V., Burni, M., Janoušková, M., & Urcelay, C. (2022). The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta‐analysis. New Phytologist, 235, 320–332. https://doi.org/10.1111/nph.18102

Matsuda, Y., Kita, K., Kitagami, Y., & Tanikawa, T. (2021). Colonization status and community structure of arbuscular mycorrhizal fungi in the coniferous tree, Cryptomeria japonica, with special reference to root orders. Plant and Soil 2021, 468, :423–438. https://doi.org/10.1007/S11104-021-05147-W

McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

Merckx, V. S. F. T., Gomes, S. I. F., Wang, D., Verbeek, C., Jacquemyn, H., Zahn, F. E., Gebauer, G., & Bidartondo, M. I. (2024). Mycoheterotrophy in the wood-wide web. Nature Plants, 10, 710–718. https://doi.org/10.1038/s41477-024-01677-0

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161. https://doi.org/10.1016/s0007-1536(70)80110-3

Powell, J. R., Parrent, J. L., Hart, M. M., Klironomos, J. N., Rillig, M. C., & Maherali, H. (2009). Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society B: Biological Sciences, 276, 4237–4245. https://doi.org/10.1098/rspb.2009.1015

R Core Team. (2023). R: a language and environment for statistical computing. In (Version 4.3.2) R Foundation for Statistical Computing

Reynolds, H. L., Hartley, A. E., Vogelsang, K. M., Bever, J. D., & Schultz, P. A. (2005). Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 167, 869–880. https://doi.org/10.1111/J.1469-8137.2005.01455.X

Reynolds, H. L., Vogelsang, K. M., Hartley, A. E., Bever, J. D., & Schultz, P. A. (2006). Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia, 147, 348–358. https://doi.org/10.1007/S00442-005-0270-6

Schlaeppi, K., Bender, S. F., Mascher, F., Russo, G., Patrignani, A., Camenzind, T., Hempel, S., Rillig, M. C., & van der Heijden, M. G. A. (2016). High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist, 212, 780–791. https://doi.org/10.1111/NPH.14070

Sikes, B. A., Powell, J. R., & Rillig, M. C. (2010). Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology, 91, 1591–1597. https://doi.org/10.1890/09-1858.1

Smith, S. E., & Read, D. (2008). Mycorrhizal symbiosis. Academic Press

Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227–250. https://doi.org/10.1146/ANNUREV-ARPLANT-042110-103846

Steidinger, B. S. (2024). Complementary effects of beneficial and non-beneficial mycorrhizal fungi on root phosphatase activity: A mycorrhizal “White Album” effect. Functional Ecology, 39, 333–345. https://doi.org/10.1111/1365-2435.14712

Thonar, C., Frossard, E., Šmilauer, P., & Jansa, J. (2014). Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Molecular Ecology, 23, 733–746. https://doi.org/10.1111/MEC.12625

Torrecillas, E., Alguacil, M. M., & Roldán, A. (2012). Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid mediterranean prairies. Applied and Environmental Microbiology, 78, 6180–6186. https://doi.org/10.1128/AEM.01287-12

Varela-Cervero, S., Vasar, M., Davison, J., Barea, J. M., Öpik, M., & Azcón-Aguilar, C. (2015). The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environmental Microbiology, 17, 2882–2895. https://doi.org/10.1111/1462-2920.12810

Verbruggen, E., van der Heijden, M. G. A., Rillig, M. C., & Kiers, E. T. (2013). Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytologist, 197, 1104–1109. https://doi.org/10.1111/j.1469-8137.2012.04348.x

Weber, S. E., Bascompte, J., Kahmen, A., & Niklaus, P. A. (2025). AMF diversity promotes plant community phosphorus acquisition and reduces carbon costs per unit of phosphorus. New Phytologist. https://doi.org/10.1111/NPH.70161

Weber, S. E., Diez, J. M., Andrews, L. V., Goulden, M. L., Aronson, E. L., & Allen, M. F. (2019). Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecology, 40, 62–71. https://doi.org/10.1016/J.FUNECO.2018.11.008

WinRHIZO. (2025). WinRHIZO Pro & Arabidopsis for root measurement. In (Version January 23rd 2025)

Young, J. P. W. (2012). A molecular guide to the taxonomy of arbuscular mycorrhizal fungi. New Phytologist, 193, 823–826. https://doi.org/10.1111/J.1469-8137.2011.04029.X

Yustikasari, L., Kitagami, Y., Obase, K., & Matsuda, Y. (2025). Morphological type and taxonomic diversity of arbuscular mycorrhizal fungi along an altitudinal gradient at Mount Ibuki, Japan. Journal of Forest Research, 30, 251–261. https://doi.org/10.1080/13416979.2024.2390273

公開済


投稿日時: 2025-10-23 05:31:25 UTC

公開日時: 2025-10-27 08:44:13 UTC
研究分野
農学・食品科学